Purification and characterization of an extracellular β-glucosidase with high transglucosylation activity and stability from Aspergillus niger No. 5.1

Original Articles

Abstract

An extracellular β-glucosidase was extracted from the culture filtrate of Aspergillus niger No. 5.1 and purified to homogeneity by using ammonium sulfate precipitation, Chitopearl-DEAE chromatography, and Sephadex G-100 chromatography. The specific activity of the enzyme was enriched 6.33-fold, with a recovery of 11.67%. The enzyme was a monomer and the molecular mass was 67.5 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 66.5 kDa by gel-filtration chromatography. The enzyme had optimum activity at pH 6.0 and 60°C and was stable over the pH range of 3.0–9.0. It showed specificity of hydrolysis for p-nitrophenyl-β-d-glucoside and cellobiose. The Km and Vmax values of the enzyme for cellobiose and salicin were 5.34 mM, 2.57 µmol/(mL·s), and 3.09 mM, 1.34 µmol/(mL·s), respectively. Both amino acid composition and N-terminal amino acid sequence of the enzyme were determined, which provides useful information for cloning of this enzyme.

Index Entries

β-Glucosidase Aspergillus niger purification characterization kinetic parameters amino acid 

References

  1. 1.
    International Union of Biochemistry. (1984), in Enzyme Nomenclature, Webb, E. C., ed., Academic, Orlando, FL, pp. 310, 311.Google Scholar
  2. 2.
    Shewale, J. G. (1982), Int. J. Biochem. 14, 435–443.CrossRefGoogle Scholar
  3. 3.
    Esen, A. (1993), in β-Glucosidases—Biochemistry and Molecular Biology, ACS Symposium Series 533, Esen, A., ed., American Chemical Society, Washington, DC, pp. 1–14.Google Scholar
  4. 4.
    Christakopoulos, P., Goodenough, P. W., Kekos, D., Macris, B. J., Claeyssens, M., and Bhat, M. K. (1994), Eur. J. Biochem. 224, 379–385.CrossRefGoogle Scholar
  5. 5.
    Fujimoto, H., Nishida, H., and Ajisaka, K. (1988), Agric. Biol. Chem. 52, 1345–1351.Google Scholar
  6. 6.
    Sasaki, K., Tachiki, T., and Tochikura, T. (1989), Agric. Biol. Chem. 53, 313–318.Google Scholar
  7. 7.
    Shinoyama, H., Takei, K., Ando, A., Fujii, T., Sasaki, M., and Doi, Y. (1991), Agric. Biol. Chem. 55, 1679–1681.Google Scholar
  8. 8.
    Cappellini, R. A. and Peterson, J. L. (1965), Mycologia 57, 962–966.CrossRefGoogle Scholar
  9. 9.
    Miller, G. L. (1959), Anal. Chem. 31, 426–429.CrossRefGoogle Scholar
  10. 10.
    Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  11. 11.
    Laemmli, U. K. (1970), Nature 227, 680–685.CrossRefGoogle Scholar
  12. 12.
    Heupel, C., Schlochtermeier, A., and Schrempf, H. (1993), Enzyme Microb. Technol. 15, 127–132.CrossRefGoogle Scholar
  13. 13.
    Ohmiya, K., Shirai, M., Kurachi, Y., and Shimizu, S. (1985), J. Bacteriol. 161, 432–434.Google Scholar
  14. 14.
    Deshpande, V., Eriksson, K. E., and Pettersson, B. (1978), Eur. J. Biochem. 90, 191–198.CrossRefGoogle Scholar
  15. 15.
    Himmel, M. E., Adney, W. S., Fox, J. W., Mitchell, D. J., and Baker, J. O. (1993), Appl. Biochem. Biotechnol. 39/40, 213–225.CrossRefGoogle Scholar
  16. 16.
    Hoh, Y. K., Yeoh, H. H., and Tan, T. K. (1992), Appl. Microbiol. Biotechnol. 37, 590–593.CrossRefGoogle Scholar
  17. 17.
    Yan, T. R., Lin, Y. H., and Lin, C. L. (1998), J. Agric. Food Chem. 46, 431–437.CrossRefGoogle Scholar
  18. 18.
    Sano, K., Amemura, A., and Harada, T. (1975), Biochim. Biophys. Acta 377, 410–420.Google Scholar
  19. 19.
    Yeoh, H. H., Tan, T. K., and Koh, S. K. (1986), Appl. Microbiol. Biotechnol. 25, 25–28.CrossRefGoogle Scholar
  20. 20.
    Yan, T. R. and Lin, C. L. (1997), Biosci. Biotech. Biochem. 61, 965–970.CrossRefGoogle Scholar
  21. 21.
    Kitpreechavanich, V., Hayashi, M., and Nagai, S. (1986), Agric. Biol. Chem. 50, 1703–1711.Google Scholar
  22. 22.
    Sakamoto, R., Kanamoto, J., Arai, M., and Murao, S. (1985), Agric. Biol. Chem. 49, 1275–1281.Google Scholar
  23. 23.
    Mandels, M. and Reese, E. T. (1963), in Advances in Enzymic Hydrolysis of Cellulases and Related Materials, Reese, E. T., ed., Pergamon, London, pp. 115–157.Google Scholar
  24. 24.
    Sanyal, A., Kundu, R. K., Dube, S., and Dube, D. K. (1988), Enzyme Microb. Technol. 10, 91–99.CrossRefGoogle Scholar
  25. 25.
    Watanabe, T., Sato, T., Yoshioka, S., Koshijima, T., and Kuwahara, M. (1992), Eur. J. Biochem. 209, 651–659.CrossRefGoogle Scholar
  26. 26.
    Workman, W. E. and Day, D. F. (1982), Appl. Environ. Microbiol. 44, 1289–1295.Google Scholar
  27. 27.
    Bause, E. and Legler, G. (1980), Biochim. Biophys. Acta 626, 459–465.Google Scholar
  28. 28.
    Machida, M., Ohtsuki, I., Fukui, S., and Yamashita, I. (1988), Appl. Environ. Microbiol. 54, 3147–3155.Google Scholar
  29. 29.
    Moranelli, F., Barbier, J. R., Dove, M. J., Mackay, R. M., Seligy, V. L., Yaguchi, M., and Willick, G. E. (1986), Biochem. Int. 12, 905–912.Google Scholar
  30. 30.
    Li, C. P., Swain, E., and Poulton, J. E. (1992), Plant Physiol. 100, 282–290.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations