Skip to main content
Log in

Thermal simulation of wire arc additive manufacturing: a new material deposition and heat input modelling

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Wire arc additive manufacturing allows the production of metallic parts by the deposition of weld beads using arc-welding technologies. This low-cost additive manufacturing technology has the ability to manufacture large-scale parts at a high deposition rate. However, the quality of the obtained parts is greatly affected by the various thermal phenomena present during the manufacturing process. Numerical simulation remains an effective tool for studying such phenomena. In this paper, a new finite element method is proposed in order to model material deposition and heat input in WAAM process. This method allows to gradually construct the mesh representing the deposited zones along the deposition path. The heat source model from Goldak is adapted and combined with the proposed material deposition technique considering the power distribution between the filler material and the molten pool. The effectiveness of the new method is validated through a set of experimentations, one of which is detailed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mech. Ind. 13(2), 89–96 (2012). https://doi.org/10.1051/meca/2012003

    Article  Google Scholar 

  2. Lopes Nunes, M., Pereira, A.C., Alves, A.C.: Smart products development approaches for industry 4.0. Proced. Manuf. 13, 1215–1222 (2017). https://doi.org/10.1016/j.promfg.2017.09.035

    Article  Google Scholar 

  3. Liberini, M., et al.: Selection of optimal process parameters for wire arc additive manufacturing. Proced. CIRP 62, 470–474 (2017). https://doi.org/10.1016/j.procir.2016.06.124

    Article  Google Scholar 

  4. Derekar, K.S.: A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. 34(8), 895–916 (2018). https://doi.org/10.1080/02670836.2018.1455012

    Article  Google Scholar 

  5. Zhao, Y., Jia, Y., Chen, S., Shi, J., Li, F.: Process planning strategy for wire-arc additive manufacturing: thermal behavior considerations. Addit. Manuf. 32, 100935 (2020). https://doi.org/10.1016/j.addma.2019.100935

    Article  Google Scholar 

  6. Montevecchi, F., Venturini, G., Grossi, N., Scippa, A., Campatelli, G.: Heat accumulation prevention in wire-arc-additive-manufacturing using air jet impingement. Manuf. Lett. 17, 14–18 (2018). https://doi.org/10.1016/j.mfglet.2018.06.004

    Article  Google Scholar 

  7. Wang, Z., Zimmer-Chevret, S., Léonard, F., et al.: Prediction of bead geometry with consideration of interlayer temperature effect for CMT-based wire-arc additive manufacturing. Weld. World 65, 2255–2266 (2021). https://doi.org/10.1007/s40194-021-01192-2

    Article  Google Scholar 

  8. Béraud, N., Vignat, F., Villeneuve, F., Dendievel, R.: Improving dimensional accuracy in EBM using beam characterization and trajectory optimization. Addit. Manuf. 14, 1–6 (2017). https://doi.org/10.1016/j.addma.2016.12.002

    Article  Google Scholar 

  9. Vignat, F., Béraud, N., Villeneuve, F.: Rapid thermal simulation of powder bed additive manufacturing.In: 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1498–1502. Bangkok, (2018), doi: https://doi.org/10.1109/IEEM.2018.8607695

  10. Stavropoulos, P., Foteinopoulos, P.: Modelling of additive manufacturing processes: a review and classification. Manuf. Rev. 5, 2 (2018). https://doi.org/10.1051/mfreview/2017014

    Article  Google Scholar 

  11. Xiong, J., Lei, Y., Li, R.: Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures. Appl. Therm. Eng. 126, 43–52 (2017). https://doi.org/10.1016/j.applthermaleng.2017.07.168

    Article  Google Scholar 

  12. Xiong, J., Li, R., Lei, Y., Chen, H.: Heat propagation of circular thin-walled parts fabricated in additive manufacturing using gas metal arc welding. J. Mater. Process. Technol. 251, 12–19 (2018). https://doi.org/10.1016/j.jmatprotec.2017.08.007

    Article  Google Scholar 

  13. Montevecchi, F., Venturini, G., Scippa, A., Campatelli, G.: Finite element modelling of wire-arc-additive-manufacturing process. Proced. CIRP 55, 109–114 (2016). https://doi.org/10.1016/j.procir.2016.08.024

    Article  Google Scholar 

  14. Montevecchi, F., Venturini, G., Grossi, N., Scippa, A., Campatelli, G.: Finite element mesh coarsening for effective distortion prediction in wire arc additive manufacturing. Addit. Manuf. 18, 145–155 (2017). https://doi.org/10.1016/j.addma.2017.10.010

    Article  Google Scholar 

  15. Ding, J., et al.: Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput. Mater. Sci. 50(12), 3315–3322 (2011). https://doi.org/10.1016/j.commatsci.2011.06.023

    Article  Google Scholar 

  16. Michaleris, P.: Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem. Anal. Des. 86, 51–60 (2014). https://doi.org/10.1016/j.finel.2014.04.003

    Article  Google Scholar 

  17. Hu, J., Tsai, H.L.: Heat and mass transfer in gas metal arc welding. Part I: the arc. Int. J. Heat Mass Transf. 50(5–6), 833–846 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.025

    Article  MATH  Google Scholar 

  18. Goldak, J., Chakravarti, A., Bibby, M.: A new element model for welding heat source. Metall. Mater. Trans. B 15, 299–305 (1984). https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  19. Chergui, A., Beraud, N., Vignat, F., Villeneuve, F.: Finite element modeling and validation of metal deposition in wire arc additive manufacturing. In: Roucoules, L., Paredes, M., Eynard, B., Morer Camo, P., Rizzi, C. (eds.) Advances on mechanics, design engineering and manufacturing III. JCM 2020. Lecture notes in mechanical engineering. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70566-4_11

    Chapter  Google Scholar 

  20. DuPont, J.N., Marder, A.R.: Thermal efficiency of arc welding processes. Weld. J.-Incl. Weld. Res. Suppl. 74(12), 406s-416s (1995)

    Google Scholar 

  21. El-Sayed, M.M., Shash, A.Y., Abd-Rabou, M.: Finite element modeling of aluminum alloy AA5083-O friction stir welding process. J. Mater. Process. Technol. 252, 13–24 (2018). https://doi.org/10.1016/j.jmatprotec.2017.09.008

    Article  Google Scholar 

  22. Manokruang, S., Vignat, F., Museau, M., Limousin, M.: Process parameters effect on weld beads geometry deposited by wire and arc additive manufacturing (WAAM). In: Roucoules, L., Paredes, M., Eynard, B., Morer Camo, P., Rizzi, C. (eds.) Advances on mechanics, design engineering and manufacturing III. JCM 2020. Lecture notes in mechanical engineering. Springer, Cham (2021)

    Google Scholar 

Download references

Funding

The work presented was funded by Univ. Grenoble Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Villeneuve.

Ethics declarations

Conflicts of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chergui, A., Villeneuve, F., Béraud, N. et al. Thermal simulation of wire arc additive manufacturing: a new material deposition and heat input modelling. Int J Interact Des Manuf 16, 227–237 (2022). https://doi.org/10.1007/s12008-021-00824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-021-00824-7

Keywords

Navigation