Advertisement

A comparative analysis of adhesive bonding and interference fitting as joining technologies for hybrid metal-composite gear manufacturing

  • Piervincenzo G. CateraEmail author
  • Domenico Mundo
  • Francesco Gagliardi
  • Alessandra Treviso
Original Paper

Abstract

The aim of this work is to compare two different joining technologies for steel and carbon fibre reinforced polymer materials in a hybrid gear in order to improve the dynamic behaviour in terms of natural frequencies and damping properties. A comprehensive approach for the design and prototyping of hybrid metal-composite gears with interference fitting and adhesive bonding is provided. In a following phase, an accurate description of the experimental impact tests is shown in order to investigate modal performances. Successively, in a finite element environment, modal analyses are conducted and frequency response functions of the gear model are analysed by means of complex stiffness matrix that accounts for structural damping. Impact tests and simulations indicate that the solution with interference fitting is stiffer than the one with adhesive, even if the damping capacity is lower. The results for both technologies show that it is possible to enhance noise and vibrations behaviour of gears through the application of composite materials in place of conventional full-metal solutions.

Keywords

Hybrid gear Finite element analysis Modal damping Frequency response function Adhesive bonding Interference fitting 

Notes

Acknowledgements

The authors gratefully acknowledge Siemens Industry Software NV (Belgium) for the valuable support.

References

  1. 1.
    Kim, B.J., Kim, H.S., Lee, D.G.: Design of hybrid steel/composite circular plate cutting tool structures. Compos. Struct. 75, 250–260 (2006).  https://doi.org/10.1016/j.compstruct.2006.04.028 CrossRefGoogle Scholar
  2. 2.
    Cho, S.-K., Kim, H.-J., Chang, S.-H.: The application of polymer composites to the table-top machine tool components for higher stiffness and reduced weight. Compos. Struct. 93, 492–501 (2011).  https://doi.org/10.1016/j.compstruct.2010.08.030 CrossRefGoogle Scholar
  3. 3.
    Cho, D.H., Lee, D.G., Choi, J.H.: Manufacture of one-piece automotive drive shafts with aluminium and composite materials. Compos. Struct. 38, 309–319 (1997).  https://doi.org/10.1016/S0263-8223(97)00065-2 CrossRefGoogle Scholar
  4. 4.
    Bae, J.-H., Jung, K.-C., Yoo, S.-H., Chang, S.-H., Kim, M., Lim, T.: Design and fabrication of a metal-composite hybrid wheel with a friction damping layer for enhancement of ride comfort. Compos. Struct. 133, 576–584 (2015).  https://doi.org/10.1016/j.compstruct.2015.07.113 CrossRefGoogle Scholar
  5. 5.
    R.F. Handschuh, G.D. Roberts, R.R. Sinnamon, D.B. Stringer, B.D. Dykas, L.W. Kohlman, Hybrid gear preliminary results—application of composites to dynamic mechanical components, NASA/TM—2012-217630 (2012)Google Scholar
  6. 6.
    LaBerge K.E., Handschuh R.F., Roberts G.D., Thorp S.: Performance investigation of a full-scale hybrid composite bull gear, AHS 2016 Forum; 72nd, 17–19 May 2016, West Palm Beach, FL, United StatesGoogle Scholar
  7. 7.
    LaBerge, K.E. Johnston, J.P., Handschuh, R.F., Roberts, G.D.: Evaluation of a variable thickness hybrid composite bull gear, AHS 2017 Forum; 73rd, 14–17 May 2018, Phoenix, Arizona, United StatesGoogle Scholar
  8. 8.
    Martinsen, K., Hu, S.J., Carlson, B.E.: Joining of dissimilar materials. CIRP Ann Manuf Technol 64, 679–699 (2015).  https://doi.org/10.1016/j.cirp.2015.05.006 CrossRefGoogle Scholar
  9. 9.
    Kieβling, R., Ihlemann, J., Pohl, M., Stommel, M., Dammann, C., Mahnken, R., Bobbert, M., Meschut, G., Hirsch, F., Kastner, M.: On the design, characterization and simulation of metal-composite interfaces. Appl. Compos. Mater. 24, 251–269 (2017).  https://doi.org/10.1007/s10443-016-9526-z CrossRefGoogle Scholar
  10. 10.
    Wang, X., Ahn, J., Lee, J., Blackman, B.R.K.: Investigation on failure modes and mechanical properties of CFRP-Ti6Al4V hybrid joints with different interface patterns using digital image correlation. Mater. Des. 101, 188–196 (2016).  https://doi.org/10.1016/j.matdes.2016.04.005 CrossRefGoogle Scholar
  11. 11.
    Liu, Q., Ma, J., Kang, L., Sun, G., Li, Q.: An experimental study on fatigue characteristics of CFRP-steel hybrid laminates. Mater. Des. 88, 643–650 (2015).  https://doi.org/10.1016/j.matdes.2015.09.024 CrossRefGoogle Scholar
  12. 12.
    Streitferdt, A., Rudolph, N.: Co-Curing of CFRP-Steel Hybrid Joints Using the Vacuum Assisted Resin Infusion Process. Appl. Compos. Mater. 24, 1137–1149 (2017).  https://doi.org/10.1007/s10443-016-9575-3 CrossRefGoogle Scholar
  13. 13.
    LaBerge, K.E., Berkebile, S.P., Handschuh, R.F., Roberts, G.D.: Hybrid gear performance under loss-of-lubrication conditions. In: 73rd American Helicopter Society Annual Forum; 9–11 May 2017, United StatesGoogle Scholar
  14. 14.
    Fritz, P.J., Williams, K.A., Mapkar, J.A.: Metal-to-composite structural joining for drivetrain applications. In: Joining Technologies for Composites and Dissimilar Materials, Volume 10, Proceedings of the 2016 Annual Conference on experimental and applied mechanics, Springer, Chapter 12, pp. 107–114Google Scholar
  15. 15.
    Treviso, A., Van Genechten, B., Mundo, D., Tournour, M.: Damping in composite materials: properties and models. Compos. B 78, 144–152 (2015).  https://doi.org/10.1016/j.compositesb.2015.03.081 CrossRefGoogle Scholar
  16. 16.
    Sun, C.T., Lu, Y.P.: Vibration Damping of Structural Elements, Prentice Hall PTR (1995)Google Scholar
  17. 17.
    Vasquez, R.E.: On the use of structural dynamics in virtual manufacturing. Int. J. Interact. Des. Manuf. 11, 103–114 (2017).  https://doi.org/10.1007/s12008-014-0240-5 CrossRefGoogle Scholar
  18. 18.
    Adhikari, S.: Structural Dynamic Analysis with Generalized Damping Models. Analysis. Wiley, New York (2014)zbMATHGoogle Scholar
  19. 19.
    Abramovich, H., Govich, D., Grunwald, A.: Damping measurements of laminated composite materials and aluminum using the hysteresis loop method. Prog. Aerosp. Sci. 78, 8–18 (2015).  https://doi.org/10.1016/j.paerosci.2015.05.006 CrossRefGoogle Scholar
  20. 20.
    Jinguang, Z., Hairu, Y., Guozhi, C., Zeng, Z.: Structure and modal analysis of carbon fiber reinforced polymer raft frame. J. Low Freq. Noise Vib Active Control 37(3), 577–589 (2018).  https://doi.org/10.1177/1461348417725960 CrossRefGoogle Scholar
  21. 21.
    Sarlin, E., Liu, Y., Vippola, M., Zogg, M., Ermanni, P., Vuorinen, J., Lepistö, T.: Vibration damping properties of steel/rubber/composite hybrid structures. Compos. Struct. 94, 3327–3335 (2012).  https://doi.org/10.1016/j.compstruct.2012.04.035 CrossRefGoogle Scholar
  22. 22.
    Kim, J.-H., Chang, S.-H.: Design of µ-CNC machining centre with carbon/epoxy composite-aluminium hybrid structures containing friction layers for high damping capacity. Compos. Struct. 92, 2128–2136 (2010).  https://doi.org/10.1016/j.compstruct.2009.09.043 CrossRefGoogle Scholar
  23. 23.
    Catera, P.G., Gagliardi, F., Mundo, D., De Napoli, L., Matveeva, A., Farkas, L.: Multi-scale modeling of triaxial braided composites for FE-based modal analysis of hybrid metal-composite gears. Compos. Struct. 182, 116–123 (2017).  https://doi.org/10.1016/j.compstruct.2017.09.017 CrossRefGoogle Scholar
  24. 24.
    Gauntt, S.M., Campbell, R.L.: Characterization of a hybrid (steel-composite) gear with various composite materials and layups, AIAA Scitech 2019 Forum, San Diego, California,  https://doi.org/10.2514/6.2019-0146
  25. 25.
    Catera, P.G., Mundo, D., Treviso, A., Gagliardi, F., Visrolia, A.: On the design and simulation of hybrid metal-composite gears. Appl. Compos. Mater. 26, 817 (2019).  https://doi.org/10.1007/s10443-018-9753-6 CrossRefGoogle Scholar
  26. 26.
    Shweiki, S., Rezayat, A., Tamarozzi, T., Mundo, D.: Transmission Error and strain analysis of lightweight gears by using a hybrid FE-analytical gear contact model. Mech. Syst. Signal Process. 123, 573–590 (2019).  https://doi.org/10.1016/j.ymssp.2019.01.024 CrossRefGoogle Scholar
  27. 27.
    Siemens LMS Scadas systemGoogle Scholar
  28. 28.
    Salem, H., Boutchicha, D., Boudjemai, A.: Modal analysis of themulti-shaped coupled honeycomb structures used in satellites structural design. Int. J. Interact. Des. Manuf. (IJIDeM) 12, 955–967 (2018).  https://doi.org/10.1007/s12008-017-0444-6 CrossRefGoogle Scholar
  29. 29.
    Siemens PLM software’s SimcenterGoogle Scholar
  30. 30.
    Basic Dynamic Analysis User’s Guide, Siemens NX NastranGoogle Scholar
  31. 31.
    Ginsberg, J.H.: Mechanical and Structural Vibrations: theory and applications. Wiley, New York (2001)Google Scholar
  32. 32.
    Mahmoudi, S., Kervoelen, A., Robin, G., Duigou, L., Daya, E.M., Cadou, J.M.: Experimental and numerical investigation of the damping of flax–epoxy composite plates. Compos. Struct. 208, 426–433 (2019).  https://doi.org/10.1016/j.compstruct.2018.10.030 CrossRefGoogle Scholar
  33. 33.
    M46J, Technical datasheet, Toray Composite Materials America IncGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Mechanical, Energy and Management EngineeringUniversity of CalabriaRendeItaly
  2. 2.National Composites CentreBristol and Bath Science ParkEmersons GreenUK

Personalised recommendations