Advertisement

A simulation-based robust methodology for operator guidance on injection moulding machine settings

  • Isidoros Sapounas
  • George-Christopher VosniakosEmail author
  • George Papazetis
Original Paper
  • 22 Downloads

Abstract

Injection moulding of plastic parts is a long established manufacturing process requiring rich experience both on mould design and on machine settings. It is customary to use process simulation software, which is considered mature enough, in order to validate tooling design and machine settings before these are tested in production. In this work, the baseline is the correct design of the tooling, i.e. the premise is that acceptable part quality can be reached, if the right values in the machine settings are used. It is not sufficient to discover these values, because they are often superseded by the operator when quality problems arise, mainly due to cycle variability. Hence, it is much more useful to determine the influence of the respective factors on part quality as a solid basis for interactive process adjustment. Thus, three main digital experiments are advocated, corresponding to the filling, cooling and packing stages of the injection moulding cycle. The control factors for each experiment are determined by referring to process ‘mechanics’ knowledge. Taguchi cost functions are setup, involving the most important responses related to the product (sink marks and shrinkage), the process (cooling time) and the machine (pressure). Nested experiments are performed for better focus on a particular range of values as necessary or desired. Analysis of variance provides information as to factor inter-dependencies and completeness of modelling. The trends are tabulated to provide interaction guidance to the machine operator.

Keywords

Injection moulding Design of experiments Process parameters Machine settings Simulation 

Notes

References

  1. 1.
    Rosato, D.V., Rosato, D.V., Rosato, M.G.: Injection Molding Handbook. Springer, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Kashyap, S., Datta, D.: Process parameter optimization of plastic injection molding: a review. Int. J. Plast. Technol. 19, 1–18 (2015).  https://doi.org/10.1007/s12588-015-9115-2 CrossRefGoogle Scholar
  3. 3.
    Fernandes, C., Pontes, A.J., Viana, J.C., Gaspar-Cunha, A.: Modeling and optimization of the injection-molding process: a review. Adv. Polym. Technol. 37, 429–449 (2018).  https://doi.org/10.1002/adv.21683 CrossRefGoogle Scholar
  4. 4.
    Chen, W.-C., Nguyen, M.-H., Chiu, W.-H., et al.: Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. Int. J. Adv. Manuf. Technol. 83, 1873–1886 (2016).  https://doi.org/10.1007/s00170-015-7683-0 CrossRefGoogle Scholar
  5. 5.
    Kitayama, S., Miyakawa, H., Takano, M., Aiba, S.: Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel. Int. J. Adv. Manuf. Technol. 88, 1735–1744 (2017).  https://doi.org/10.1007/s00170-016-8904-x CrossRefGoogle Scholar
  6. 6.
    Nguyen, T.K., Hwang, C.J., Lee, B.: Numerical investigation of warpage in insert injection- molded lightweight hybrid products. Int. J. Precis. Eng. Manuf. 18, 187–195 (2017).  https://doi.org/10.1007/s12541-017-0024-5 CrossRefGoogle Scholar
  7. 7.
    Oliaei, E., Heidari, B.S., Davachi, S.M., et al.: Warpage and shrinkage optimization of injection-molded plastic spoon parts for biodegradable polymers using Taguchi, ANOVA and artificial neural network methods. J. Mater. Sci. Technol. 32, 710–720 (2016).  https://doi.org/10.1016/j.jmst.2016.05.010 CrossRefGoogle Scholar
  8. 8.
    Kc, B., Faruk, O., Agnelli, J.A.M., et al.: Sisal-glass fiber hybrid biocomposite: optimization of injection molding parameters using Taguchi method for reducing shrinkage. Compos. Part A Appl. Sci. Manuf. 83, 152–159 (2016).  https://doi.org/10.1016/j.compositesa.2015.10.034 CrossRefGoogle Scholar
  9. 9.
    Kim, K., Park, C., Suh, Y.S.: Interactive robust optimal design of plastic injection products with minimum weldlines. Int. J. Adv. Manuf. Technol. 88, 1333–1344 (2017).  https://doi.org/10.1007/s00170-016-8854-3 CrossRefGoogle Scholar
  10. 10.
    Li, K., Yan, S., Pan, W., Zhao, G.: Optimization of fiber-orientation distribution in fiber-reinforced composite injection molding by Taguchi, back propagation neural network, and genetic algorithm—particle swarm optimization. Adv. Mech. Eng. 9, 1–11 (2017).  https://doi.org/10.1177/1687814017719221 CrossRefGoogle Scholar
  11. 11.
    Li, K., Yan, S., Pan, W., Zhao, G.: Warpage optimization of fiber-reinforced composite injection molding by combining back propagation neural network and genetic algorithm. Int. J. Adv. Manuf. Technol. 90, 963–970 (2017).  https://doi.org/10.1007/s00170-016-9409-3 CrossRefGoogle Scholar
  12. 12.
    Gaaz, T.S., Sulong, A.B., Kadhum, A.A.H., et al.: Optimizing injection molding parameters of different halloysites type-reinforced thermoplastic polyurethane nanocomposites via Taguchi complemented with ANOVA. Materials (Basel) 9, 947 (2016).  https://doi.org/10.3390/ma9110947 CrossRefGoogle Scholar
  13. 13.
    Gong, G., Chen, J.C., Guo, G.: Enhancing tensile strength of injection molded fiber reinforced composites using the Taguchi-based six sigma approach. Int. J. Adv. Manuf. Technol. 91, 3385–3393 (2017).  https://doi.org/10.1007/s00170-017-0031-9 CrossRefGoogle Scholar
  14. 14.
    Pervez, H., Mozumder, M., Mourad, A.H.: Optimization of injection molding parameters for HDPE/TiO2 nanocomposites fabrication with multiple performance characteristics using the Taguchi method and grey relational analysis. Materials 9, 710 (2016).  https://doi.org/10.3390/ma9080710 CrossRefGoogle Scholar
  15. 15.
    Khavekar, R., Vasudevan, H., Modi, B.: A comparative analysis of Taguchi methodology and Shainin system doe in the optimization of injection molding process parameters. IOP Conf. Ser. Mater. Sci. Eng. 225, 012183 (2017).  https://doi.org/10.1088/1757-899x/225/1/012183 CrossRefGoogle Scholar
  16. 16.
    Moayyedian, M., Abhary, K., Marian, R.: Optimization of injection molding process based on fuzzy quality evaluation and Taguchi experimental design. CIRP J. Manuf. Sci. Technol. (2017).  https://doi.org/10.1016/j.cirpj.2017.12.001 CrossRefGoogle Scholar
  17. 17.
    Bénabès, J., Bennis, F., Poirson, E., Ravaut, Y.: Interactive optimization strategies for layout problems. Int. J. Interact. Des. Manuf. 4, 181–190 (2010).  https://doi.org/10.1007/s12008-010-0100-x CrossRefGoogle Scholar
  18. 18.
    Antony, J.: Simultaneous optimisation of multiple quality characteristics in manufacturing processes using Taguchi’s quality loss function. Int. J. Adv. Manuf. Technol. 17, 134–138 (2001).  https://doi.org/10.1007/s001700170201 CrossRefGoogle Scholar
  19. 19.
    Roy, R.K.: A primer on Taguchi method. Reinhold International Company Ltd, London (1990)zbMATHGoogle Scholar
  20. 20.
    Vosniakos, G.-C., Kalattas, A., Siasos, A.: Optimal process planning for helical bevel gears using Taguchi design of simulated machining experiments. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2017).  https://doi.org/10.1177/0954405417699010 CrossRefGoogle Scholar
  21. 21.
    Vosniakos, G.-C., Gkortza, A., Kontolatis, N.: Toolpath strategy decisions in “rough machining-by-region” using design of experiments on computer-aided manufacturing systems. Int. J. Manuf. Res. 11, 68–88 (2016).  https://doi.org/10.1504/IJMR.2016.076985 CrossRefGoogle Scholar
  22. 22.
    Papazetis, G., Vosniakos, G.-C.: Feature-based process parameter variation in continuous paths to improve dimensional accuracy in three-dimensional printing via material extrusion. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2019).  https://doi.org/10.1177/0954405419838361 CrossRefGoogle Scholar
  23. 23.
    Menges, G., Michaeli, W., Mohren, P.: Spritzgießwerkzeuge : Auslegung, Bau, Anwendung. Carl Hanser Verlag GmbH & Co, Munich (2007)CrossRefGoogle Scholar
  24. 24.
    Chiang, K.-T., Chang, F.-P.: Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology. Int. J. Adv. Manuf. Technol. 35, 468–479 (2007).  https://doi.org/10.1007/s00170-006-0739-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations