Advertisement

M.Integrator: a maker’s tool for integrating kinetic mechanisms and sensors

  • Yunwoo JeongEmail author
  • Han-Jong Kim
  • Hyungjun Cho
  • Tek-Jin Nam
Original Paper
  • 41 Downloads

Abstract

As digital fabrication and physical computing continue to emerge, prototyping of the interactive kinetic artifacts has become common for makers. However, novice makers have difficulties in integrating components: physical mechanisms, actuators, sensors, and software code. We present a prototyping tool, M.Integrator, which supports a synthetic approach to building interactive kinetic artifacts. It helps makers consider prototypes as a whole from the early stage of the fabrication process. The sensor-based movement of the interactive kinetic artifact can be automatically converted to software code using the visual authoring interface. A maker can interactively test the interactive kinetic artifact by combining virtual and physical components. Instant physical testing is carried out by a customized prototyping board. In the user study with twelve makers, the tool allowed makers to complete the task in a short evaluation session. The visual authoring interface enabled them to generate the sensor-based movement after only a brief explanation. We found that the tool supported synthetic and iterative prototyping. Combinations of virtual and physical components supported the interactive simulation throughout the session. We conclude by discussing the implications for future digital fabrication of the interactive kinetic artifact.

Keywords

Fabrication Interactive kinetic artifact Movement simulation Interactive simulation Visual authoring interface Embedded system Virtual component 

Notes

Acknowledgements

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2017S1A5A2A01025327)

References

  1. 1.
    Ace editor (2011). https://ace.c9.io/. Accessed 17 October 2019
  2. 2.
    Anderson, F., Grossman, T., Fitzmaurice, G.: Trigger-action-circuits: leveraging generative design to enable novices to design and build circuitry. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pp. 331–342. ACM, New York, NY, USA (2017).  https://doi.org/10.1145/3126594.3126637
  3. 3.
    Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W., Matusik, W., Bickel, B.: Computational design of mechanical characters. ACM Trans. Gr. (TOG) 32(4), 83 (2013)zbMATHGoogle Scholar
  4. 4.
    Follmer, S., Carr, D., Lovell, E., Ishii, H.: Copycad: remixing physical objects with copy and paste from the real world. In: Adjunct Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, pp. 381–382. ACM, New York, NY, USA (2010).  https://doi.org/10.1145/1866218.1866230
  5. 5.
    Fourney, A., Terry, M.: Picl: portable in-circuit learner. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, pp. 569–578. ACM, New York, NY, USA (2012).  https://doi.org/10.1145/2380116.2380188
  6. 6.
    Gellersen, H., Kortuem, G., Schmidt, A., Beigl, M.: Physical prototyping with smart-its. IEEE Pervasive Comput. 3(3), 74–82 (2004)CrossRefGoogle Scholar
  7. 7.
    Greenberg, S., Fitchett, C.: Phidgets: easy development of physical interfaces through physical widgets. In: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST ’01, pp. 209–218. ACM, New York, NY, USA (2001).  https://doi.org/10.1145/502348.502388
  8. 8.
    Hudson, N., Alcock, C., Chilana, P.K.: Understanding newcomers to 3D printing: motivations, workflows, and barriers of casual makers. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 384–396. ACM (2016)Google Scholar
  9. 9.
    Jeong, Y., Kim, H.J., Nam, T.J.: Mechanism perfboard: an augmented reality environment for linkage mechanism design and fabrication. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pp. 411:1–411:11. ACM, New York, NY, USA (2018).  https://doi.org/10.1145/3173574.3173985
  10. 10.
    Johnny-five: The javascript robotics & iot platform (2012). http://johnny-five.io/. Accessed 17 October 2019
  11. 11.
    Kelly, A., Shapiro, R.B., de Halleux, J., Ball, T.: Arcadia: a rapid prototyping platform for real-time tangible interfaces. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pp. 409:1–409:8. ACM, New York, NY, USA (2018).  https://doi.org/10.1145/3173574.3173983
  12. 12.
    Kim, C.M., Nam, T.J.: G-raff: an elevating tangible block for spatial tabletop interaction. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 4161–4164. ACM (2015)Google Scholar
  13. 13.
    Kim, H.J., Jeong, Y., Kim, J.W., Nam, T.J.: A prototyping tool for kinetic mechanism design and fabrication: developing and deploying M. sketch for science, technology, engineering, the arts, and mathematics education. Adv. Mech. Eng. 10(12), 1687814018804104 (2018)Google Scholar
  14. 14.
    Kim, H.J., Kim, C.M., Nam, T.J.: Sketchstudio: Experience prototyping with 2.5-dimensional animated design scenarios. In: Proceedings of the 2018 Designing Interactive Systems Conference, pp. 831–843. ACM (2018)Google Scholar
  15. 15.
    Kim, H.J., Kim, J.W., Nam, T.J.: ministudio: Designers’ tool for prototyping ubicomp space with interactive miniature. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 213–224. ACM (2016)Google Scholar
  16. 16.
    Kim, J.W., Kim, H.J., Nam, T.J.: M. gesture: an acceleration-based gesture authoring system on multiple handheld and wearable devices. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2307–2318. ACM (2016)Google Scholar
  17. 17.
    Lee, M.H., Row, Y.K., Son, O., Lee, U., Kim, J., Jeong, J., Maeng, S., Nam, T.J.: Flower-pop: facilitating casual group conversations with multiple mobile devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(4), 150 (2018)CrossRefGoogle Scholar
  18. 18.
    Littlebits (2011). https://littlebits.com/. Accessed 17 October 2019
  19. 19.
    McCrae, J., Umetani, N., Singh, K.: Flatfitfab: interactive modeling with planar sections. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST ’14, pp. 13–22. ACM, New York, NY, USA (2014).  https://doi.org/10.1145/2642918.2647388
  20. 20.
    McGrath, W., Drew, D., Warner, J., Kazemitabaar, M., Karchemsky, M., Mellis, D., Hartmann, B.: Bifröst: visualizing and checking behavior of embedded systems across hardware and software. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 299–310. ACM (2017)Google Scholar
  21. 21.
    Megaro, V., Zehnder, J., Bächer, M., Coros, S., Gross, M.H., Thomaszewski, B.: A computational design tool for compliant mechanisms. ACM Trans. Gr. 36(4), 1–82 (2017)CrossRefGoogle Scholar
  22. 22.
    Millner, A., Baafi, E.: Modkit: blending and extending approachable platforms for creating computer programs and interactive objects. In: Proceedings of the 10th International Conference on Interaction Design and Children, IDC ’11, pp. 250–253. ACM, New York, NY, USA (2011).  https://doi.org/10.1145/1999030.1999074
  23. 23.
    Mota, C.: The rise of personal fabrication. In: Proceedings of the 8th ACM conference on Creativity and cognition, pp. 279–288. ACM (2011)Google Scholar
  24. 24.
    Nam, T.J., Park, S., Verlinden, J.: A model to conceptualize interactivity. Int. J. Interact. Des. Manuf. (IJIDeM) 3(3), 147–156 (2009)CrossRefGoogle Scholar
  25. 25.
    Nam, T.J., Sakong, K.: Collaborative 3D workspace and interaction techniques for synchronous distributed product design reviews. Int J Des 3(1) (2009)Google Scholar
  26. 26.
    Ramakers, R., Todi, K., Luyten, K.: Paperpulse: an integrated approach for embedding electronics in paper designs. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 2457–2466. ACM, New York, NY, USA (2015).  https://doi.org/10.1145/2702123.2702487
  27. 27.
    Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch: programming for all. Commun. ACM 52(11), 60–67 (2009).  https://doi.org/10.1145/1592761.1592779 CrossRefGoogle Scholar
  28. 28.
    Sadler, J., Durfee, K., Shluzas, L., Blikstein, P.: Bloctopus: a novice modular sensor system for playful prototyping. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’15, pp. 347–354. ACM, New York, NY, USA (2015).  https://doi.org/10.1145/2677199.2680581
  29. 29.
    Schmitt, P., Seitinger, S.: Plywood punk: a holistic approach to designing animated artifacts. In: Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, pp. 123–126. ACM (2009)Google Scholar
  30. 30.
    Scratch (2013). https://scratch.mit.edu/. Accessed 17 October 2019
  31. 31.
    Strasnick, E., Agrawala, M., Follmer, S.: Scanalog: Interactive design and debugging of analog circuits with programmable hardware. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pp. 321–330. ACM, New York, NY, USA (2017).  https://doi.org/10.1145/3126594.3126618
  32. 32.
    Tetteroo, D., Soute, I., Markopoulos, P.: Five key challenges in end-user development for tangible and embodied interaction. In: Proceedings of the 15th ACM on International conference on multimodal interaction, pp. 247–254. ACM (2013)Google Scholar
  33. 33.
    Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., Gross, M.: Computational design of linkage-based characters. ACM Trans. Gr. (TOG) 33(4), 64 (2014)Google Scholar
  34. 34.
    Tinkercad circuits (2012). https://www.tinkercad.com/circuits. Accessed 17 October 2019
  35. 35.
    Tinkerbots (2014). https://www.tinkerbots.com/. Accessed 17 October 2019
  36. 36.
    Umetani, N., Koyama, Y., Schmidt, R., Igarashi, T.: Pteromys: interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Gr. 33(4), 65:1–65:10 (2014).  https://doi.org/10.1145/2601097.2601129 CrossRefGoogle Scholar
  37. 37.
    Weichel, C., Lau, M., Kim, D., Villar, N., Gellersen, H.W.: Mixfab: a mixed-reality environment for personal fabrication. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI ’14, pp. 3855–3864. ACM, New York, NY, USA (2014).  https://doi.org/10.1145/2556288.2557090
  38. 38.
    Yamaoka, J., Kakehi, Y.: Mirageprinter: interactive fabrication on a 3d printer with a mid-air display. In: ACM SIGGRAPH 2016 Studio, SIGGRAPH ’16, pp. 6:1–6:2. ACM, New York, NY, USA (2016).  https://doi.org/10.1145/2929484.2929489
  39. 39.
    Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., Guo, B.: Motion-guided mechanical toy modeling. ACM Trans. Gr. 31(6), 1–127 (2012)CrossRefGoogle Scholar
  40. 40.
    Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., Guo, B.: Motion-guided mechanical toy modeling. ACM Trans. Gr. 31(6), 127:1–127:10 (2012).  https://doi.org/10.1145/2366145.2366146 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial DesignKAIST (Korea Advanced Institute of Science and Technology)DaejeonRepublic of Korea

Personalised recommendations