Optimizing multiple process parameters in fused deposition modeling with particle swarm optimization

  • Arup Dey
  • David Hoffman
  • Nita YodoEmail author
Original Paper


Fused deposition modeling (FDM) is one of the most widely used additive manufacturing processes to produce prototypes as well as functional parts from thermoplastics. However, the applications of the FDM process are still limited due to several drawbacks, such as poor surface quality, poor mechanical properties, or high built time. It has been deemed that the part characteristics and build time can be improved by determining an optimum combination of process parameters. To optimize multiple process parameters in FDM, this paper employs a multi-objective particle swarm optimization based on the data collected from the experimental study. Four (04) process parameters, namely layer thickness, build orientation, infill density, and extrusion temperature are optimized to achieve higher compressive strength and lower build time. The optimization results provide information on the combined impacts of the four process parameters on compressive strength and build time. This information can aid decision makers with better judgment when dealing with multiple conflicting objectives.


Fused deposition modeling Process parameters Compressive strength Build time Multi-parameters Particle swarm optimization 



This research work was partially supported by NDSU EPSCoR Grant FAR0030453.


  1. 1.
    Wohlers, T., Caffrey, T.: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report. Wohlers Associates Inc., Colorado (2011)Google Scholar
  2. 2.
    Hu, Z., Mahadevan, S.: Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities. Int. J. Adv. Manuf. Technol. 93(5–8), 2855–2874 (2017)CrossRefGoogle Scholar
  3. 3.
    Villalpando, L., Eiliat, H., Urbanic, R.J.: An optimization approach for components built by fused deposition modeling with parametric internal structures. Procedia CIRP 17, 800–805 (2014)CrossRefGoogle Scholar
  4. 4.
    Peng, A., Xiao, X., Yue, R.: Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int. J. Adv. Manuf. Technol. 73(1–4), 87–100 (2014)CrossRefGoogle Scholar
  5. 5.
    Letcher, T., Rankouhi, B., Javadpour, S.: Experimental study of mechanical properties of additively manufactured ABS plastic as a function of layer parameters. In: Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition IMECE (2015)Google Scholar
  6. 6.
    Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res. 3(1), 81–90 (2012)CrossRefGoogle Scholar
  7. 7.
    Chacón, J., et al.: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124, 143–157 (2017)CrossRefGoogle Scholar
  8. 8.
    Akande, S.O.: Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis. Int. J. Eng. Res. Technol. 4(4), 196–202 (2015)Google Scholar
  9. 9.
    Qattawi, A., Alrawi, B., Guzman, A.: Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manuf. 10, 791–803 (2017)CrossRefGoogle Scholar
  10. 10.
    uz Zaman, U.K., et al.: Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. Int. J. Adv. Manuf. Technol. 101, 1215–1226 (2019)CrossRefGoogle Scholar
  11. 11.
    Lee, B.H., Abdullah, J., Khan, Z.A.: Optimization of rapid prototyping parameters for production of flexible ABS object. J. Mater. Process. Technol. 169(1), 54–61 (2005)CrossRefGoogle Scholar
  12. 12.
    Levy, G.N., Schindel, R., Kruth, J.-P.: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann. 52(2), 589–609 (2003)CrossRefGoogle Scholar
  13. 13.
    Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl. Math. Model. 40(23–24), 10052–10073 (2016)CrossRefGoogle Scholar
  14. 14.
    Sood, A., Ohdar, R., Mahapatra, S.: Parametric appraisal of fused deposition modelling process using the grey Taguchi method. Proc. Inst. Mech. Eng. Part B 224(1), 135–145 (2010)CrossRefGoogle Scholar
  15. 15.
    Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31(1), 287–295 (2010)CrossRefGoogle Scholar
  16. 16.
    Panda, B.N., Bahubalendruni, M.R., Biswal, B.B.: Comparative evaluation of optimization algorithms at training of genetic programming for tensile strength prediction of FDM processed part. Procedia Mater. Sci. 5, 2250–2257 (2014)CrossRefGoogle Scholar
  17. 17.
    Noriega, A., et al.: Dimensional accuracy improvement of FDM square cross-section parts using artificial neural networks and an optimization algorithm. Int. J. Adv. Manuf. Technol. 69(9–12), 2301–2313 (2013)CrossRefGoogle Scholar
  18. 18.
    Nancharaiah, T., Raju, D.R., Raju, V.R.: An experimental investigation on surface quality and dimensional accuracy of FDM components. Int. J. Emerg. Technol. 1(2), 106–111 (2010)Google Scholar
  19. 19.
    Rinanto, A., et al.: Simultaneous optimization of tensile strength, energy consumption and processing time on FDM process using Taguchi and PCR-TOPSIS. In: 2018 4th International Conference on Science and Technology (ICST). IEEE (2018)Google Scholar
  20. 20.
    Rayegani, F., Onwubolu, G.C.: Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int. J. Adv. Manuf. Technol. 73(1–4), 509–519 (2014)CrossRefGoogle Scholar
  21. 21.
    Sood, A.K., Ohdar, R., Mahapatra, S.S.: Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater. Des. 30(10), 4243–4252 (2009)CrossRefGoogle Scholar
  22. 22.
    Liu, X., et al.: Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int. J. Adv. Manuf. Technol. 89(5–8), 2387–2397 (2017)CrossRefGoogle Scholar
  23. 23.
    Srivastava, M., et al.: Multi-objective optimisation of fused deposition modelling process parameters using RSM and fuzzy logic for build time and support material. Int. J. Rapid Manuf. 7(1), 25–42 (2018)CrossRefGoogle Scholar
  24. 24.
    Gurrala, P.K., Regalla, S.P.: Multi-objective optimisation of strength and volumetric shrinkage of FDM parts: a multi-objective optimization scheme is used to optimize the strength and volumetric shrinkage of FDM parts considering different process parameters. Virtual Phys. Prototyp. 9(2), 127–138 (2014)CrossRefGoogle Scholar
  25. 25.
    Pandey, P.M., Thrimurthulu, K., Reddy, N.V.: Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int. J. Prod. Res. 42(19), 4069–4089 (2004)CrossRefGoogle Scholar
  26. 26.
    Rao, R.V., Rai, D.P.: Optimization of fused deposition modeling process using teaching–learning-based optimization algorithm. Eng. Sci. Technol. Int. J. 19(1), 587–603 (2016)CrossRefGoogle Scholar
  27. 27.
    Nidagundi, V.B., Keshavamurthy, R., Prakash, C.: Studies on parametric optimization for fused deposition modelling process. Mater. Today Proc. 2(4–5), 1691–1699 (2015)CrossRefGoogle Scholar
  28. 28.
    Nancharaiah, T.: Optimization of process parameters in FDM process using design of experiments. Int. J. Emerg. Technol. 2(1), 100–102 (2011)Google Scholar
  29. 29.
    Chin Ang, K., et al.: Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp. J. 12(2), 100–105 (2006)CrossRefGoogle Scholar
  30. 30.
    Hernandez, R., et al.: Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling. In: 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX (2016)Google Scholar
  31. 31.
    Ventola, C.L.: Medical applications for 3D printing: current and projected uses. Pharm. Ther 39(10), 704 (2014)Google Scholar
  32. 32.
    D695-15, A.I.A.: Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International, West Conshohocken (2015)Google Scholar
  33. 33.
    Torres, J., et al.: Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 67(5), 1183–1193 (2015)CrossRefGoogle Scholar
  34. 34.
  35. 35.
  36. 36.
    Chauhan, V.S., Bhardwaj, N.K., Chakrabarti, S.K.: Application of response surface methodology and central composite design for the optimization of talc filler and retention aid in papermaking. IJCT 20, 121–127 (2013)Google Scholar
  37. 37.
    Khuri, A., Cornell, J.: Response Surfaces: Designs and Analyses. M. Dekker, New York (1996)zbMATHGoogle Scholar
  38. 38.
    Howell, D.C.: Statistical Methods for Psychology. Cengage Learning, Boston (2009)Google Scholar
  39. 39.
    Lalwani, S., et al.: A comprehensive survey: applications of multi-objective particle swarm optimization (MOPSO) algorithm. Trans. Comb. 2(1), 39–101 (2013)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Kim, N., et al.: Improving surface roughness of additively manufactured parts using a photopolymerization model and multi-objective particle swarm optimization. Appl. Sci. 9(1), 151 (2019)CrossRefGoogle Scholar
  41. 41.
    Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial and Manufacturing EngineeringNorth Dakota State UniversityFargoUSA

Personalised recommendations