Residual-signal generation for vehicle lateral dynamics disturbances: a switched-observers approach

  • Ali AbdoEmail author
  • Jamal Siam
  • Rashad Mustafa
  • Hakam Shehadeh
Original Paper


Residual signal generation is a fundamental step in fault diagnosis and fault tolerant control systems. This paper proposes a switched observer approach to generate a road-adaptive vehicle dynamics residual signal. The main contribution in this paper is to generate a residual signal with low false alarm rate. Lateral vehicle dynamics suffers from presence of two types of disturbances, a stochastic white-noise disturbance and a deterministic lateral dynamics one. Kalman filter and parity-space approach are used to generate the residual signals that must feed the fault tolerant control system. The observers were modeled and simulated in Matlab/Simulink environment, they were then applied to a vehicle dynamics scenarios with lateral disturbances using virtual vehicle simulator (CarMaker).


Switched observers Diagnostic observer Parity-space approach Kalman filter Vehicle lateral dynamics Road bank angle Fault detection 



  1. 1.
    Ding, S.X.: Model-Based Faults Diagnosis Techniques: Design Schemes Algorithms, and Tools, 2nd edn. Springer, Berlin (2013)CrossRefGoogle Scholar
  2. 2.
    Ding, S.X.: Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems. Springer, Berlin (2014)CrossRefGoogle Scholar
  3. 3.
    Frank, P.M., Ding, S.X.: Survey of robust residual generation and evaluation methods in observer based fault detection schemes. J. Process Control 7, 403–424 (1997)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Patton, R.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  5. 5.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2008)zbMATHGoogle Scholar
  6. 6.
    Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems Stochastic Analysis and Synthesis. Springer, Berlin (2003)CrossRefGoogle Scholar
  7. 7.
    Noura, H., Theilliol, D., Ponsart, J.-C., Chamseddine, A.: Fault-Tolerant Control Systems Design and Practical Applications. Springer, London (2009)CrossRefGoogle Scholar
  8. 8.
    Siam, J., Abdo, A., Abdou, A., Al-Rimawi, A., Shehadeh, H.: Fault tolerant control of an industrial manufacturing process using image processing. In: 18th IEEE International Conference on Environment and Electrical Engineering, Italy, June 12–16 (2018)Google Scholar
  9. 9.
    Abdo, A., Siam, J., Al-Rimawi, A.: Visual information integration in fault tolerant control system. In: 25th Mediterranean Conference on Control and Automation (MED) (2017)Google Scholar
  10. 10.
    Isermann, R.: Fault-Diagnosis Systems. Springer, Berlin (2006)CrossRefGoogle Scholar
  11. 11.
    Patton, R.J., Chen, J., Liu, G.P.: Robust fault detection of dynamic systems via genetic algorithms. Proc. IMechE Part Int. J. Syst. Control Eng. 211(5), 357–364 (1997)CrossRefGoogle Scholar
  12. 12.
    Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Course 8, SIGGRAPH (2001)Google Scholar
  13. 13.
    Frank, P.M., Wuennenberg, J.: Robust fault diagnosis using unknown input schemes. In: Patton, R.J., Frank, P.M., Clarke, R.N. (eds.) Fault Diagnosis in Dynamic Systems: Theory and Application, Chap. 3, pp. 47–98. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  14. 14.
    Ding, X., Guo, L., Jeinsch, T.: A characterization of parity space and its application to robust fault detection. IEEE Trans. Autom. Control 44, 337–343 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ding, S.X., Ding, E.L., Jeinsch, T., Zhang, P.: An approach to a unified design of FDI systems. In: Proceeding of American Control System Conference (2000)Google Scholar
  16. 16.
    Mitschke, M.: Dynamik der Kraftfahrzeuge B and C. Springer, Berlin (1990)CrossRefGoogle Scholar
  17. 17.
    Abdo, A., Saijai, J., Damlakhi, W., Ding, S.X.: An observer-based fault detection approach for vehicle lateral dynamics control system. In: Advance Control and Diagnosis Conference (ACD), Zielona Gora, Poland (2009)Google Scholar
  18. 18.
    Abdo, A.: Fault Detection Schemes for Switched Systems. Shaker, Aachen (2013)Google Scholar
  19. 19.
    Abdo, A., Ding, S.X., Saijai, J., Damlakhi, W.: Integration of residual evaluation and threshold computation into switched fault detection system. In: The 8th International Federation of Automatic Control (IFAC) Symposium Safe-Process, Mexico City, Mexico, August 29–31 (2012)Google Scholar
  20. 20.
    Na, Y., Li, L., Ding, S.X., Abdo, A.: A fault detection scheme for uncertain switched systems under asynchronous switching. In: 10th IFAC Safeprocess, Warsaw, Poland, August 29–31 (2018)Google Scholar
  21. 21.
    Tseng, H.E., Madau, D., Ashrafi, B., Brown, T., Recker, D.: Technical challenges in the development of vehicle stability control system. In: International Conference on Control Application, IEEE 1999, Hawai, USA (1999)Google Scholar
  22. 22.
    Tseng, H.E., Yester, J., Hills, B., Kuang, M.L.: Method for Robust Estimation of Road-Bank Angle. United States Patent, Patent No. US 6,351,694, B1. Date: Feb 26 (2002)Google Scholar
  23. 23.
    Schneider, S., Weinhold, N., Ding, S.X., Schulz, H.-G., Ding, E.L., Rehm, A.: Parity space method based design of unknown input observers for fault detection in vehicle lateral dynamics control system. In: Proceeding of the AVCS 2004, Bergeggi, Italien, 28–30 October (2004)Google Scholar
  24. 24.
    Chen, G., Hsu, S.-H.: Linear Stochastic Control System. CRC Press, Boca Raton (1995)Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, Faculty of Engineering and TechnologyBirzeit UniversityRamallahPalestine
  2. 2.Department of Mechanical and Mechatronics Engineering, Faculty of Engineering and TechnologyBirzeit UniversityRamallahPalestine

Personalised recommendations