Developing a reference model for human–robot interaction

  • Ali Ahmad MalikEmail author
  • Arne Bilberg
Original Paper


The use of collaborative robots is on the rise for human-centered automation for developing flexible production systems. The deployment of collaborative robots and distribution of tasks between human and robot carries several challenges. One challenge is assessing the right level of human engagement with the fellow robot in the collaborative work while remaining in line with safety limitations and cycle time constraints. This study explores various types and levels of interactions between humans and robots in a manufacturing domain. A synthesizing architecture of human–robot collaboration is suggested based on three dimensions of team composition, level of engagement and safety. The architecture describes the collaboration using a 3-dimensional reference scale.


Human–robot collaboration Model Taxonomy Human–robot interaction 



  1. 1.
    Frohm, J. et al.: Levels of automation in manufacturing. Ergonomia Int. J. Ergonomics Hum. Factors 30, 3–28 (2008)Google Scholar
  2. 2.
    Malik, A.A., Bilberg, A.: Framework to implement collaborative robots in manual assembly: a lean automation approach. In: Katalinic, B. (ed.) Proceedings of the 28th DAAAM International Symposium, pp. 1726–9679. DAAAM International, Vienna (2017)Google Scholar
  3. 3.
    Peshkin, M., Colgate, J.E.: Cobots. Ind. Robots Int. J. 26(5), 335–341 (1996)CrossRefGoogle Scholar
  4. 4.
    Fasth, Å., et al.: Measuring and analysing Levels of Automation in an assembly system. In: Mitsuishi, M., Ueda, K., Kimura, F. (eds.) Manufacturing Systems and Technologies for the New Frontier, pp. 169–172. Springer, London (2008)CrossRefGoogle Scholar
  5. 5.
    Fitts, P.M. et al.: Human engineering for an effective air-navigation and traffic-control system, and appendixes 1 thru 3. 1951Google Scholar
  6. 6.
    Norman, D.A.: The human side of automation. In: Meyer, G., Beiker, S. (eds.) Road Vehicle Automation 2, pp. 73–79. Springer, Cham (2015)CrossRefGoogle Scholar
  7. 7.
    Vysocky, A., Novak, P.: Human-robot collaboration in industry. MM Sci. J. 9(2), 903–906 (2016)CrossRefGoogle Scholar
  8. 8.
    Djuric, A.M., et al.: A Framework for collaborative robot (CoBot) integration in advanced manufacturing systems. SAE Int. J. Mater. Manuf. 9, 457–464 (2016)CrossRefGoogle Scholar
  9. 9.
    Michniewicz, J., Reinhart, G.: Cyber-physical-robotics-modelling of modular robot cells for automated planning and execution of assembly Tasks. Mechatronics 34, 170–180 (2016)CrossRefGoogle Scholar
  10. 10.
    Müller, R., et al.: Robot workmate: a trustworthy coworker for the continuous automotive assembly line and its implementation. Proc. CIRP 44, 263–268 (2016)CrossRefGoogle Scholar
  11. 11.
    Fast-Berglund, Å., et al.: Evaluating cobots for final assembly. Proc. CIRP 44, 175–180 (2016)CrossRefGoogle Scholar
  12. 12.
    Krüger, J., et al.: Cooperation of human and machines in assembly lines. CIRP Ann. Manuf. Technol. 58(2), 628–646 (2009)CrossRefGoogle Scholar
  13. 13.
    Scholtz, J.C.: Human-robot interactions: Creating synergistic cyber forces. In: Schultz, A.C., Parker, L.E. (eds.) Multi-robot systems: from swarms to intelligent automata, pp. 177–184. Springer, Dordrecht (2002)CrossRefGoogle Scholar
  14. 14.
    Yanco, H.A., Drury, J.L.: A taxonomy for human–robot interaction. In: Proceedings of the AAAI Fall Symposium on Human–Robot Interaction, pp. 111–119 (2002)Google Scholar
  15. 15.
    Yanco, H.A., Drury, J.: Classifying human-robot interaction: an updated taxonomy. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, pp. 2841–2846 (2004)Google Scholar
  16. 16.
    Shi, J. et al.: Levels of human and robot collaboration for automotive manufacturing. In: Proceedings of the Workshop on Performance Metrics for Intelligent Systems. pp. 95–100 (2012)Google Scholar
  17. 17.
    Bauer, W., et al.: Lightweight Robots in Manual Assembly—Best to Start Simply!: Examining Companies’ Initial Experiences with Lightweight Robots. Frauenhofer-Institut für Arbeitswirtschaft und Organisation IAO, Stuttgart (2016)Google Scholar
  18. 18.
    Bdiwi, M., et al.: A new strategy for ensuring human safety during various levels of interaction with industrial robots. CIRP Ann. Manuf. Technol. 66, 453–456 (2017)CrossRefGoogle Scholar
  19. 19.
    Ranz, F., et al.: A morphology of human robot collaboration systems for industrial assembly. Proc. CIRP 72, 99–104 (2018)CrossRefGoogle Scholar
  20. 20.
    Aaltonen, I., et al.: Refining levels of collaboration to support the design and evaluation of human-robot interaction in the manufacturing industry. Proc. CIRP 72, 93–98 (2018)CrossRefGoogle Scholar
  21. 21.
    Guiochet, J., et al.: Safety-critical advanced robots: a survey. Robotics Auton. Syst. 94, 43–52 (2017)CrossRefGoogle Scholar
  22. 22.
    Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 (1983)CrossRefGoogle Scholar
  23. 23.
    Hancock, P., Scallen, S.: The future of function allocation. Ergon. Des. 4(4), 24–29 (1996)Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Southern DenmarkSønderborgDenmark

Personalised recommendations