Advertisement

Optimization of required torque and energy consumption in the roll forming process

  • Behrooz Shirani BidabadiEmail author
  • Hassan Moslemi Naeini
  • Roohollah Azizi Tafti
  • Yaser Tajik
Original Paper
  • 13 Downloads

Abstract

Exact estimates of the power required in manufacturing processes prevent machines from being designed with capacities that are several times greater than those required. Owing to the high energy consumption in the manufacture of tubes and profiles, in this study and considering the effects of some input parameters (including the bend angle increment at each stand, internal distance between the stands, strip thickness, channel flange width, and corner radius) in the production of a symmetrical channel section, the energy consumption and required torque were investigated and optimized using the full factorial method. The results showed that an increase in the bend angle increment at each stand increases the required torque and changes the energy consumption, so an increase in the bend angle increment at each stand from 30° to 60° could save 1 kJ energy for each meter of the product. Moreover, reductions in the flange width and strip thickness reduce the torque and energy for each unit length. The effects of the distance between stands on the energy and the torque depend on the bend angle increment at each stand. Consequently, at lower angle increments, the reduced distance between stands increases the energy consumption and required torque.

Keywords

Cold roll forming Symmetrical channel section Torque Energy consumption Full factorial method 

Notes

Acknowledgements

The cooperation and guidance of PAYA Tubes and Profiles Co., Mr. Barghikar and Dr. Mousavi, and the faculty members of the University of Tarbiat Modares are greatly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Richter, K., Haase, R., Schieck, F., Landgrebe, D.: Tempered forming of magnesium alloys using the example of roll forming. Mater. Today Proc. 2, S60–S66 (2015).  https://doi.org/10.1016/j.matpr.2015.05.018 CrossRefGoogle Scholar
  2. 2.
    Wiebenga, J.H., Weiss, M., Rolfe, B., van den Boogaard, A.H.: Product defect compensation by robust optimization of a cold roll forming process. J. Mater. Process. Technol. 213(6), 978–986 (2013).  https://doi.org/10.1016/j.jmatprotec.2013.01.006 CrossRefGoogle Scholar
  3. 3.
    Halmos, G.: Roll Forming Handbook, 1st edn. Taylor & Francis Group, Boca Raton (2006)Google Scholar
  4. 4.
    Bhattacharyya, D., Smith, P.D., Thadakamalla, S.K., Collins, I.F.: The prediction of roll load in cold roll-forming. J. Mech. Work. Technol. 14, 363–379 (1987)CrossRefGoogle Scholar
  5. 5.
    Lindgren, M.: Experimental investigations of the roll load and roll torque when high strength steel is roll formed. J. Mater. Process. Technol. 191(1–3), 44–47 (2007).  https://doi.org/10.1016/j.jmatprotec.2007.03.041 CrossRefGoogle Scholar
  6. 6.
    Davoodi, B., Moslemi Naeini, H., Dadgar Asl, Y., Azizi Tafti, R., Kasaeie, M., Panahizadeh, R.: Numerical and experimental investigation of roll forces and torques in cold roll forming of a channel section. In: International Conference on Advances Materials and Processing Technologies, Paris, pp. 581–586 (2010).  https://doi.org/10.1063/1.3552510
  7. 7.
    Larrañaga, J., Galdos, L., Uncilla, L., Etxaleku, A.: Development and validation of a numerical model for sheet metal roll forming. Int. J. Mater. Form. 3(S1), 151–154 (2010).  https://doi.org/10.1007/s12289-010-0729-9 CrossRefGoogle Scholar
  8. 8.
    Paralikas, J., Salonitis, K., Chryssolouris, G.: Energy efficiency of cold roll forming process. Int. J. Adv. Manuf. Technol. 66(9–12), 1271–1284 (2012).  https://doi.org/10.1007/s00170-012-4405-8 Google Scholar
  9. 9.
    Paralikas, J., Salonitis, K., Chryssolouris, G.: Robust optimization of the energy efficiency of the cold roll forming process. Int. J. Adv. Manuf. Technol. 69(1–4), 461–481 (2013).  https://doi.org/10.1007/s00170-013-5011-0 CrossRefGoogle Scholar
  10. 10.
    Groche, P., Mueller, C., Traub, T., Butterweck, K.: Experimental and numerical determination of roll forming loads. Steel Res. Int. 85(1), 112–122 (2014).  https://doi.org/10.1002/srin.201300190 CrossRefGoogle Scholar
  11. 11.
    Abeyrathna, B., Rolfe, B., Hodgson, P., Weiss, M.: A first step towards a simple in-line shape compensation routine for the roll forming of high strength steel. Int. J. Mater. Form. 9, 423–434 (2015).  https://doi.org/10.1007/s12289-015-1238-7 CrossRefGoogle Scholar
  12. 12.
    Mason, L.R., Gunst, F.R., Hess, L.J.: Statistical Design and Analysis of Experiments. Wiley, New York (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Stat-Ease: Design-expert software. Help section, 7.0.0 edn., USA (2005)Google Scholar
  14. 14.
    Abedian, A., Shirani Bidabadi, B., Shateri, R.: Numerical and experimental study of open die forging process design for producing heavy valves. Int. J. Interact. Des. Manuf. (IJIDeM) 12, 49–61 (2017).  https://doi.org/10.1007/s12008-017-0374-3 CrossRefGoogle Scholar
  15. 15.
    Park, H.-S., Anh, T.-V.: Optimization of bending sequence in roll forming using neural network and genetic algorithm. J. Mech. Sci. Technol. 25(8), 2127–2136 (2011).  https://doi.org/10.1007/s12206-011-0533-6 CrossRefGoogle Scholar
  16. 16.
    Tehrani, M.S., Hartley, P., Naeini, H.M., Khademizadeh, H.: Localised edge buckling in cold roll-forming of symmetric channel section. Thin Walled Struct. 44(2), 184–196 (2006).  https://doi.org/10.1016/j.tws.2006.01.008 CrossRefGoogle Scholar
  17. 17.
    Shirani Bidabadi, B., Moslemi Naeini, H., Azizi Tafti, R., Mazdak, S.: Experimental investigation of the ovality of holes on pre-notched channel products in the cold roll forming process. J. Mater. Process. Technol. 225, 213–220 (2015).  https://doi.org/10.1016/j.jmatprotec.2015.06.008 CrossRefGoogle Scholar
  18. 18.
    Kasaei, M.M., Moslemi Naeini, H., Azizi Tafti, R., Tehrani, M.S.: Prediction of maximum initial strip width in the cage roll forming process of ERW pipes using edge buckling criterion. J. Mater. Process. Technol. 214(2), 190–199 (2014).  https://doi.org/10.1016/j.jmatprotec.2013.08.012 CrossRefGoogle Scholar
  19. 19.
    Shirani Bidabadi, B., Moslemi Naeini, H., Salmani Tehrani, M., Barghikar, H.: Experimental and numerical study of bowing defects in cold roll-formed, U-channel sections. J. Constr. Steel Res. 118, 243–253 (2016).  https://doi.org/10.1016/j.jcsr.2015.11.007 CrossRefGoogle Scholar
  20. 20.
    Salmani Tehrani, M., Moslemi Naeini, H., Hartley, P., Khademizadeh, H.: Localized edge buckling in cold roll-forming of circular tube section. J. Mater. Process. Technol. 177(1–3), 617–620 (2006).  https://doi.org/10.1016/j.jmatprotec.2006.03.201 CrossRefGoogle Scholar
  21. 21.
    Meriam, J.L., Kraige, L.G.: Dynamics. Wiley, New York (2012)zbMATHGoogle Scholar
  22. 22.
    Navidi, W.: Statistics for Engineering and Scientists, 3rd edn. McGraw-Hill, New York (2011)Google Scholar
  23. 23.
    Shirani Bidabadi, B., Moslemi Naeini, H., Azizi Tafti, R.: Experimental and numerical study of required torque in the cold roll forming of symmetrical channel sections. J. Manuf. Process. 27, 63–75 (2017).  https://doi.org/10.1016/j.jmapro.2017.04.026 CrossRefGoogle Scholar
  24. 24.
    Hinkelmann, K., Oscar, K.: Design and Analysis of Experiments. Wiley, Trenton (2008)zbMATHGoogle Scholar
  25. 25.
    Zeng, G., Li, S.H., Yu, Z.Q., Lai, X.M.: Optimization design of roll profiles for cold roll forming based on response surface method. Mater. Des. 30(6), 1930–1938 (2009).  https://doi.org/10.1016/j.matdes.2008.09.018 CrossRefGoogle Scholar
  26. 26.
    Paralikas, J., Salonitis, K., Chryssolouris, G.: Investigation of the effect of roll forming pass design on main redundant deformations on profiles from AHSS. Int. J. Adv. Manuf. Technol. 56(5–8), 475–491 (2011).  https://doi.org/10.1007/s00170-011-3208-7 CrossRefGoogle Scholar
  27. 27.
    Shirani Bidabadi, B., Moslemi Naeini, H., Azizi Tafti, R., Barghikar, H.: Experimental study of bowing defects in pre-notched channel section products in the cold roll forming process. Int. J. Adv. Manuf. Technol. 87, 997–1011 (2016).  https://doi.org/10.1007/s00170-016-8547-y CrossRefGoogle Scholar
  28. 28.
    Tajik, Y., Moslemi Naeini, H., Azizi Tafti, R., Shirani Bidabadi, B.: A strategy to reduce the twist defect in roll-formed asymmetrical-channel sections. Thin Walled Struct. 130, 395–404 (2018).  https://doi.org/10.1016/j.tws.2018.05.013 CrossRefGoogle Scholar
  29. 29.
    Safdarian, R., Moslemi Naeini, H.: The effects of forming parameters on the cold roll forming of channel section. Thin Walled Struct. 92, 130–136 (2015).  https://doi.org/10.1016/j.tws.2015.03.002 CrossRefGoogle Scholar
  30. 30.
    Rossi, B., Degée, H., Boman, R.: Numerical simulation of the roll forming of thin-walled sections and evaluation of corner strength enhancement. Finite Elem. Anal. Des. 72, 13–20 (2013).  https://doi.org/10.1016/j.finel.2013.04.002 CrossRefGoogle Scholar
  31. 31.
    H-w, Zhang, Liu L-z, HuP, X-h, Liu: Numerical simulation and experimental investigation of springback in U-channel forming of tailor rolled blank. J. Iron. Steel Res. Int. 19(9), 8–12 (2012).  https://doi.org/10.1016/s1006-706x(13)60002-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNorthern Arizona UniversityArizonaUSA
  2. 2.Faculty of Mechanical EngineeringTarbiat Modares UniversityTehranIran
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringYazd UniversityYazdIran
  4. 4.Department of Mechanical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations