Dynamics and lubrication analyses of scotch yoke mechanism

  • Amjad Al-Hamood
  • Hazim U. Jamali
  • Oday I. AbdullahEmail author
  • Adolfo Senatore
Original Paper


In this paper the contact problem of a scotch yoke mechanism has been investigated in details under the elastohydrodynamic lubrication regime and line contact model is used in the analyses. The non-Newtonian oil behavior of the lubricant and the variation of the load and the surface velocities throughout the operating cycles are considered in the analyses. The results reveal that the variation of these values makes the contact problem (depending on the position in the operating cycle) to operate under lightly and heavily loaded conditions. Under these conditions, extremely thin levels of film thickness have been predicted.


Dynamics analyses Scotch yoke mechanism Elastohydrodynamic Contact problem 



  1. 1.
    Chowdhury, M., Khalil, M., Nuruzzaman, D., Rahaman, M.: The effect of sliding speed and normal load on friction and wear property of aluminum. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 11(01), 45–49 (2011)Google Scholar
  2. 2.
    MahendraBoopathi, M., Arulshri, K., Iyandurai, N., Shanmughasundaram, P.: Dry sliding wear, co-efficient of friction and corrosion behaviour of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 14(04), 44–53 (2014)Google Scholar
  3. 3.
    David, J.: Design of a two-stroke cycle spark ignition engine employing a scotch-yoke crankshaft mechanism. SAE international, 1985, paper no. 851518.
  4. 4.
    Riegger, O.K.: Design criteria and performance of an advanced reciprocating compressor. In: International Compressor Engineering Conference. Paper 690 (1990)Google Scholar
  5. 5.
    Messaros, M.C., Verstraete, J.L.: Design and development of a high reliability, oil lubricated compressor for a space borne Joule–Thomson cryocooler. In: International Compressor Engineering Conference. Paper 1040 (1994)Google Scholar
  6. 6.
    Amrutesh, P., Sagar, B., Venu, B.: Solar grass cutter with linear blades by using scotch yoke mechanism. Int. J. Eng. Res. Appl. 4(9), 10–21 (2014)Google Scholar
  7. 7.
    Yu, J., Hu, Y., Huo, J., Wang, L.: Dolphin-like propulsive mechanism based on an adjustable scotch yoke. Mech. Mach. Theory 44(3), 603–614 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dursunkaya, Z., Keribar, R., Ganapathy, V.: Amodel of piston secondary motion and elastohydrodynamic skirt lubrication. ASME J. Tribol. 116, 777–785 (1994)CrossRefGoogle Scholar
  9. 9.
    Senatore, A., D’Agostino, V.: Piston ring behaviour simulation considering mixed-lubrication and flexibility. In: ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, September 24–28, 2005, Long Beach, California, USAGoogle Scholar
  10. 10.
    Martin, G.H.: Kinematics and Dynamics of Machines. Waveland Press, Long Grove (2002)Google Scholar
  11. 11.
    Manhães, W., Sampaio, R., Lima, R., Hagedorn, P., Deü, J.-F.: Lagrangians for electromechanical systems (2018).
  12. 12.
    Gregory, S., Diaz, K., Hamilton, M., Micklos, B.: Evaluation of a model for the evolution of wear in a scotch-yoke mechanism. J. Tribol. ASME 125, 678–681 (2003)CrossRefGoogle Scholar
  13. 13.
    Conry, T.F., Wang, S.S., Cusano, C.C.: A Reynolds-eyring equation for elastohydrodynamic lubrication in line contacts. ASME J. Tribol. 109(4), 648–654 (1987). CrossRefGoogle Scholar
  14. 14.
    Johnson, K.L., Tevarwerk, J.L.: Shear behaviour of EHL oil films. Proc. R. Soc. Lond. A 356, 215–236 (1977)CrossRefGoogle Scholar
  15. 15.
    Roelands, C.: Correlational aspects of the viscosity-temperature-pressure relationships of lubricating oils. Ph.D. thesis, Technical University Delft, The Netherlands (1966)Google Scholar
  16. 16.
    Lugt, P.M., Morales-Espejel, G.E.: A review of elasto-hydrodynamic lubrication theory. Tribol. Trans. 54(3), 470–496 (2011)CrossRefGoogle Scholar
  17. 17.
    Dowson, D., Higginson, G.R.: Elastohydrodynamic Lubrication. Pergamon, Oxford (1966)Google Scholar
  18. 18.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  19. 19.
    Abdullah, O.I., Schlattmann, J., Majeed, M.H., Sabri, L.A.: The distribution of frictional heat generated between the contacting surfaces of the friction clutch system. Int. J. Interact. Des. Manuf. IJIDeM (2018). Google Scholar
  20. 20.
    Belhocine, A., Abdullah, O.I.: Similarity and numerical analysis of the generalized Levèque problem to predict the thermal boundary layer. Int. J. Interact. Des. Manuf. IJIDeM 12(3), 1015–1025 (2018)CrossRefGoogle Scholar
  21. 21.
    Abdullah, O.I., Akhtar, M.J., Schlattmann, J.: Investigation of thermo-elastic behavior of multidisk clutches. J. Tribol. 137(1), 011703 (2015)CrossRefGoogle Scholar
  22. 22.
    Abdullah, O.I., Schlattmann, J.: An investigation into the thermal behavior of the grooved dry friction clutch. J. Tribol. 136(3), 034504 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversity of KerbalaKerbalaIraq
  2. 2.Energy Engineering DepartmentUniversity of BaghdadBaghdadIraq
  3. 3.Hamburg University of TechnologyHamburgGermany
  4. 4.Department of Industrial Engineering, Nanomates CentreUniversity of SalernoFiscianoItaly

Personalised recommendations