Advertisement

Integration of mechanical deformation and optical losses in the design of linear Fresnel solar collectors

  • Mehdi El AmineEmail author
  • Mohammed Sallaou
Original Paper
  • 7 Downloads

Abstract

Increasing energy efficiency of concentrating solar power (CSP) is of great importance to accelerate the market penetration of these technologies. The design of CSP components must take into account manufacturing cost as well as energy efficiency. The present paper proposes a method to analyze optical efficiency of Linear Fresnel reflectors taking into account the environmental conditions present in the implantation site. The objective is to design Fresnel collector that combines a good optical efficiency with a low consumption of raw material during its manufacturing. The first step is to quantify the impact of external environment on the mechanical behavior of collector structure. The impact of wind action on collector structure is evaluated by the mean of an accurate fluid dynamics analysis. Ray tracing method is then used to quantify the optical performance of reflective mirrors taking in account the deformation of collector structure caused by wind action and other external loads. In order to illustrate the proposed method, many design solutions of collector were analyses in order to maximize the performances in terms of optical efficiency and structure weight. A preference-based multi-objective model is then used to synthesize the performances of each design solutions in a single value. This model is based on the use of desirability functions and an aggregation operator.

Keywords

Concentrating solar power Linear Fresnel collector Optical losses Ray tracing method Collector deformation Collector design 

Notes

References

  1. 1.
    Hoffert, M.I., Caldeira, K., Benford, G., Criswell, D.R., Green, C., Herzog, H.: Advanced technology paths to global climate stability energy for a green house planet. Science 298, 981–987 (2002)CrossRefGoogle Scholar
  2. 2.
    He, Y.L., Wang, K., Du, B.C., Qiu, Y., Liang, Q.: Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: a review. Chin. Sci. Bull. 61, 3208–3237 (2016)Google Scholar
  3. 3.
    Weinstein, L.A., Loomis, J., Bhatia, B., Bierman, D.M., Wang, E.N., Chen, G.: Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015)CrossRefGoogle Scholar
  4. 4.
    Wang, K., He, Y.L., Qiu, Y., Zhang, Y.W.: A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver. Renew. Energ. 89, 93–107 (2016)CrossRefGoogle Scholar
  5. 5.
    Jha, A.: Concentrated Solar Power Could Generate ‘quarter of World’s Energy’. The guardian publishing website (2009). https://www.theguardian.com/environment/2009/may/26/solarpower-renewableenergy. Accessed 5 May 2018
  6. 6.
    Dalvi, V.H., Panse, S.V., Joshi, J.B.: Solar thermal technologies as a bridge from fossil fuels to renewables. Nat. Clim. Change 5, 1007–1013 (2015)CrossRefGoogle Scholar
  7. 7.
    Porta, F.L.: Technical and economical analysis of future perspectives of solar thermal power plants. In: Report of IER, pp. 1–86. Institute for Energy Economics and Rational Energy. University of Stuttgart, Stuttgart (2005)Google Scholar
  8. 8.
    Lancereau, Q., Rabut, Q., Itskhokine, D., Benmarraze, M.: Wind loads on Linear Fresnel Reflectors’ technology: a numerical study. Enrgy. Proced. 69, 116–125 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhu, G., Wendelin, T., Wagner, M.J., Kutscher, C.: History, current state, and future of linear Fresnel concentrating solar collectors. Sol. Energy 103, 639–652 (2014)CrossRefGoogle Scholar
  10. 10.
    Mathioulakis, E., Papanicolaou, E., Belessiotis, V.: Optical performance and instantaneous efficiency calculation of linear Fresnel solar collectors. Int. J. Energ. Res. 42(3), 1–15 (2017)Google Scholar
  11. 11.
    Kumara, V., Shrivastavaa, R.L., Untawaleb, S.P.: Fresnel lens: a promising alternative of reflectors in concentrated solar power. Renew. Sustain. Energ. Rev. 4, 376–390 (2015)CrossRefGoogle Scholar
  12. 12.
    Benyakhlef, S., Al Mers, A., Merroun, O., Bouatem, A., Boutammachte, N., El Alj, S., Ajdad, H.: Impact of heliostat curvature on optical performance of Linear Fresnel solar concentrators. Renew. Energ. 98, 463–474 (2016)CrossRefGoogle Scholar
  13. 13.
    Benyakhlef, S., Al Mers, A., Merroun, O., Bouatem, A., Boutammachte, N., El Alj, S., Ajdad, A., Erregueragui, Z., Zemmouri, E.: Curvature variability study for small- and large-scale linear Fresnel solar fields: a step toward optimization. J. Sol. Energ. Eng. 139(5), 051009 (2017)CrossRefGoogle Scholar
  14. 14.
    Zhu, J., Huang, H.: Design and thermal performances of semi-parabolic linear Fresnel reflector solar concentration collector. Energ. Convers. Manag. 77, 733–737 (2014)CrossRefGoogle Scholar
  15. 15.
    Qiu, Y., He, Y.L., Cheng, Z.D., Wang, K.: Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Appl. Energ. 146, 162–173 (2015)CrossRefGoogle Scholar
  16. 16.
    Boito, P., Grena, R.: Optimization of the geometry of Fresnel linear collectors. Sol. Energy 135, 479–486 (2016)CrossRefGoogle Scholar
  17. 17.
    Honghang, S., Bo, G., Qiang, Y.: A review of wind loads on heliostats and trough collectors. Renew. Sustain. Energ. Rev. 32, 206–221 (2014)CrossRefGoogle Scholar
  18. 18.
    Thalange, V.C., Dalvi, V.H., Mahajani, S.M., Panse, S.V., Joshi, J.B.: Deformation and optics based structural design and cost optimization of cylindrical reflector system. Sol. Energy 158, 687–700 (2017)CrossRefGoogle Scholar
  19. 19.
    Prahl, C., Theimel, T.A., Ralf, U.: Structural optimization of a line-focussing solar collector with stationary absorber tube. In: 17th SolarPACES Conference, Granada (2011)Google Scholar
  20. 20.
    Pottler, K., Ulmera, S., Lüpfert, E., Landmann, M., Röger, M., Prahl, C.: Ensuring performance by geometric quality control and specifications for parabolic trough solar fields. Energy Procedia 49, 2170–2179 (2014)CrossRefGoogle Scholar
  21. 21.
    Spencer, G.H., Murty, M.V.R.K.: General ray-tracing procedure. J. Opt. Soc. Am. 52, 672–678 (1962)CrossRefGoogle Scholar
  22. 22.
    Otto, K.N., Antonsson, E.K.: The method of imprecision compared to utility theory for design selection problems. In: Design Theory and Methodology DTM’93, pp. 167–173 (1993)Google Scholar
  23. 23.
    Harrington, E.C.: The desirability function. Ind. Qual. Contr. 21(10), 494–498 (1965)Google Scholar
  24. 24.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. Syst. 18(1), 183–190 (1988)CrossRefzbMATHGoogle Scholar
  25. 25.
    Scott, M.J., Antonsson, E.K.: Using indifference points in engineering decisions. In: 11th International Conference on Design Theory and Methodology, Baltimore (2000)Google Scholar
  26. 26.
    Collignan, A., Sebastian, P., Pailhes, J., Ledoux, Y.: Optimization of product in dynamic design space and selection through the arc-elasticity concept. Int. J. Interact. Des. Manuf. 5, 243–254 (2011)CrossRefGoogle Scholar
  27. 27.
    Quirante, T., Ledoux, Y., Sebastian, P.: Multiobjective optimization including design robustness objectives for the embodiment design of a two-stage flash evaporator. Int. J. Interact. Des. Manuf. 6, 29–39 (2012)CrossRefGoogle Scholar
  28. 28.
    Jin, Y., Geslin, M., Lu, S.C.Y.: Impact of argumentative negotiation on collaborative engineering. CIRP Ann. 56(1), 181–184 (1991)CrossRefGoogle Scholar
  29. 29.
    El Mghouchi, Y., El Bouardi, A., Choulli, Z., Ajzoul, T.: New model to estimate and evaluate the solar radiation. Int. J. Sustain. Built Environ. 3(2), 225–234 (2014)CrossRefGoogle Scholar
  30. 30.
    Moghimi, M.A., Ahmadi, G.: Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant. Appl. Energy 225, 413–423 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ecole Nationale Supérieure des Arts et Métiers, Equipe M2IUniversité Moulay IsmailMeknesMorocco

Personalised recommendations