Identification of relevant parameters for the metrological adjustment of thermal machine models

  • Steffen SchroederEmail author
  • Bernd Kauschinger
  • Arvid Hellmich
  • Steffen Ihlenfeldt
  • Damien Phetsinorath
Original Paper


Models are increasingly applied to improve the thermo-elastic behavior of machine tools. The most universal models are those with physically based approaches. They are used for analysis in the design process of the machines and for determining correction values in machine control during operation. In order to achieve sufficient accuracy, the models must be adjusted with metrological support. This is due to some model parameters, which have a high degree of uncertainty and overall effect. Because of the large number of parameters with very different characteristics, the determination of the parameters relevant for the adjustment is manually and computationally time-consuming. This article presents a systematic method of parameter selection that reduces this effort. The procedure is demonstrated exemplarily by the example of the thermo-elastic model of a hexapod strut axis.


Machine tool Thermal model Parameter identification Control 



The German Science Foundation (DFG) funded this research within the CRC 96 “Thermo-energetic design of machine tools” project B04.


  1. 1.
    Mayr, J., et al.: Thermal issues in machine tools. CIRP Ann. 61(2), 771–791 (2012)CrossRefGoogle Scholar
  2. 2.
    Großmann, K.: Thermo-Energetische Gestaltung von Werkzeugmaschinen. Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) 107(5), 307–314 (2012)CrossRefGoogle Scholar
  3. 3.
    Lee, J., Bagheri, B., Kao, H.A.: Cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015). ISSN 2213-8463Google Scholar
  4. 4.
    Voigt, I., Winkler, S., Bucht, A., Drossel, W.-G., Werner R.: Thermal error compensation on linear motor based on latent heat storages. In: Conference on Thermal Issues in Machine Tools, pp. 117–126. Auerbach/Vogtl (2018)Google Scholar
  5. 5.
    Gebhardt, M.: Thermal behaviour and compensation of rotary axes in 5-axis. Doctoral Thesis (2014)Google Scholar
  6. 6.
    Großmann, K., Wunderlich, B., Szatmari, S.: Progess in accuracy and calibration of parallel kinematics. Parallel kinematic machines in research and practice. In: Proceedings of the 4th Chemnitz Parallel Kinematics Seminar PKS 2004, 20–21 April 2004, Chemnitz (Germany), pp. 49–68. Reports from the IWU, 24, Verlag Wissenschaftliche Skripten, Zwickau (2004)Google Scholar
  7. 7.
    Schroeder, S., Galant, A., Beitelschmidt, M., Kauschinger, B.: Efficient modelling and computation of structure-variable thermal behaviour of machine tools, pp. 13–22. In: Conference on Thermal Issues in Machine Tools, Auerbach/Vogtl (2018)Google Scholar
  8. 8.
    Kauschinger, B., Schroeder, S.: Uncertain parameters in thermal machine-tool models and methods to design their metrological adjustment process. Appl. Mech. Mater. 794, 379–386 (2015)CrossRefGoogle Scholar
  9. 9.
    Kauschinger, B., Schroeder, S.: Uncertainties in heat loss models of rolling bearings of machine tools. In: Procedia CIRP 7th HPC 2016—CIRP Conference on High Performance Cutting (2016)Google Scholar
  10. 10.
    Krylov, A.N.: On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined. Izvestaja AN SSSR (News of Academy of Sciences of the USSR) 7(4), 491–539 (1931)Google Scholar
  11. 11.
    Jungnickel, G.: Simulation des thermischen Verhaltens von Werkzeugmaschinen. Schriftenreihe des Lehrstuhls für Werkzeugmaschinen, Dresden (2000)Google Scholar
  12. 12.
    Pianosi, F., et al.: Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ. Model. Softw. 79, 214–232 (2016)CrossRefGoogle Scholar
  13. 13.
    Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161 (1991)CrossRefGoogle Scholar
  14. 14.
    Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22(10), 1509–1518 (2007)CrossRefGoogle Scholar
  15. 15.
    Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TU Dresden, Institut für Mechatronischen Maschinenbau, Professur für Werkzeugmaschinenentwicklung und adaptive Steuerungen (IMD/LWM)DresdenGermany
  2. 2.Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWUDresdenGermany

Personalised recommendations