Parameters effects analysis of rotary ultrasonic machining on carbon fiber reinforced plastic (CFRP) composite using an interactive RSM Method

  • A. Slimane
  • S. Slimane
  • S. Kebdani
  • M. Chaib
  • S. Dahmane
  • B. Bouchouicha
  • N. Sardi
  • S. Adjim
Original paper


The purpose of this work is indicated to study the influence of machining parameters on cutting force by the Response surface method (RSM), the effects of vibration amplitude and tool rotation speed with the feedrate on cutting force have been studied on the drilling of carbon fiber reinforced plastic (CFRP) composites using rotary ultrasonic machining (RUM). This method allows us to have an integrated mix of variables to obtain an optimal value of cutting force in order to optimize the machining operation of carbon fiber reinforced plastic (CFRP), as well as to choose the most influential parameters on the machining operation in order to obtain the right information as soon as possible and for the least cost.


Rotary ultrasonic machining (RUM) Carbon fiber reinforced plastic (CFRP) composite Response surface method (RSM) Cutting force Confidence interval 



  1. 1.
    Jian-Hua, Z., Yan, Z., Fu-Qiang, T., Shuo, Z., Lan-Shen, G.: Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass. Int. J. Adv. Manuf. Technol. 78, 1893–1904 (2015)CrossRefGoogle Scholar
  2. 2.
    Ning, F., Cong, W., Wang, H., Hu, Y., Hu, Z., Pei, Z.: Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. Int. J. Adv. Manuf. Technol. 92, 1217–1229 (2017)CrossRefGoogle Scholar
  3. 3.
    Slimane, A., Bouchouicha, B., Benguediab, M., Slimane, S.A.: Contribution to the study of fatigue and rupture of welded structures in carbon steel-a48 ap: experimental and numerical study. Trans. Indian Inst. Met. 68, 465–477 (2015)CrossRefGoogle Scholar
  4. 4.
    Churi, N.: Rotary Ultrasonic Machining of Hard-to-Machine Materials. Kansas State University (2010)Google Scholar
  5. 5.
    Legge, P.: Machining without abrasive slurry. Ultrasonics 4, 157–162 (1966)CrossRefGoogle Scholar
  6. 6.
    Komaraiah, M., Narasimha Reddy, P.: Rotary ultrasonic machining—a new cutting process and its performance. Int. J. Prod. Res. 29, 2177–2187 (1991)CrossRefGoogle Scholar
  7. 7.
    Pei, Z., Ferreira, P.: An experimental investigation of rotary ultrasonic face milling. Int. J. Mach. Tools Manuf 39, 1327–1344 (1999)CrossRefGoogle Scholar
  8. 8.
    Cong, W., Pei, Z.J., Treadwell, C.: Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks. Ultrasonics 54, 1594–1602 (2014)CrossRefGoogle Scholar
  9. 9.
    Jiao, Y., Liu, W., Pei, Z., Xin, X., Treadwell, C.: Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. J. Manuf. Sci. Eng. 127, 752–758 (2005)CrossRefGoogle Scholar
  10. 10.
    Zvoncan, M., Beno, M., Kovac, M., Peterka, J.: Cross section of machined layer for rotary ultrasonic machining with a hollow drill. Manuf. Ind. Eng. 11, 11–13 (2012)Google Scholar
  11. 11.
    Singh, R.P., Singhal, S.: Rotary ultrasonic machining: a review. Mater. Manuf. Process. 31, 1795–1824 (2016)CrossRefGoogle Scholar
  12. 12.
    Fernando, P., Zhang, M., Pei, Z., Cong, W.: Intermittent and continuous rotary ultrasonic machining of K9 glass: an experimental investigation. J. Manuf. Mater. Process. 1, 20 (2017)Google Scholar
  13. 13.
    Lv, D., Huang, Y., Wang, H., Tang, Y., Wu, X.: Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass. J. Mater. Process. Technol. 213, 1548–1557 (2013)CrossRefGoogle Scholar
  14. 14.
    Lv, D., Wang, H., Tang, Y., Huang, Y., Li, Z.: Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7. Precis. Eng. 37, 839–848 (2013)CrossRefGoogle Scholar
  15. 15.
    Lv, D.: Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7. Int. J. Adv. Manuf. Technol. 84, 1443–1455 (2016)CrossRefGoogle Scholar
  16. 16.
    Slimane, A., Kebdani, S., Bouchouicha, B., Benguediab, M., Slimane, S., Bahram, K., et al.: An interactive method for predicting industrial equipment defects. Int. J. Adv. Manuf. Technol. 95, 4341–4351 (2018)CrossRefGoogle Scholar
  17. 17.
    Slimane, A., Bouchouicha, B., Benguediab, M., Slimane, S.-A.: Parametric study of the ductile damage by the Gurson–Tvergaard–Needleman model of structures in carbon steel A48-AP. J. Mater. Res. Technol. 4, 217–223 (2015)CrossRefGoogle Scholar
  18. 18.
    Goupy, J., Creighton, L.: Introduction aux plans d’expériences: Toutes les techniques nécessaires à la conduite d’une étude, 5e édition. Dunod (2013)Google Scholar
  19. 19.
    Goupy, J.: Plans d’expériences pour surfaces de réponse. Dunod (1999)Google Scholar
  20. 20.
    Ravikumar, S., Rao, V.S., Pranesh, R.: Effect of process parameters on mechanical properties of friction stir welded dissimilar materials between AA6061-T651 and AA7075-T651 alloys. Int. J. Adv. Mech. Eng. 4, 101–114 (2014)Google Scholar
  21. 21.
    Kamoun, A., Chaabouni, M.M., Ayedi, H.F.: Plans d’expériences et traitements de surface-Etude quantitative des effets et interactions. Techniques de l’Ingénieur, Paris (2011)Google Scholar
  22. 22.
    Slimane, S., Kebdani, S., Boudjemai, A., Slimane, A.: Effect of position of tension-loaded inserts on honeycomb panels used for space applications. Int. J. Interact. Des. Manuf. (IJIDeM) 12, 393–408 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mécanique AppliquéeDépartement de Génie Mécanique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MBOranAlgeria
  2. 2.Centre of Satellite Development (CDS), Ibn Rochd USTOOranAlgeria
  3. 3.Laboratory of Intelligent Structures/DGRSDTCTR University of Ain TemouchentAin TemouchentAlgeria
  4. 4.Laboratory of Structures and Solids Mechanics (LMSS), Faculty of TechnologyUniversity of Sidi-Bel-AbbesSidi-Bel-AbbesAlgeria
  5. 5.Laboratory of Materials and Reactive Systems (LMSR), Department of Mechanical EngineeringUniversity of Sidi-Bel-AbbesSidi-Bel-AbbesAlgeria
  6. 6.Department of Electronics and Electrotechnics, Faculty of Electrical EngineeringUniversity of Abou Baker BelkaidTlemcenAlgeria

Personalised recommendations