Advertisement

Interactive design of space manufacturing systems, optimality and opportunity

  • Mohammed Amine Zafrane
  • Abdelamdjid Boudjemai
  • Nabil Boughanmi
Technical Paper
  • 48 Downloads

Abstract

Increasing competitiveness in the space market, forces the industrialists and to pursuit ways to manufacture a high quality product at a minimal cost, to reduce the risk, optimize manufacturing cost and time, the developers have promoted focus on the interactive design of the products. This research focuses on Interactive Multidisciplinary Design and Optimization of Launch Vehicle Satellite with a three-stage liquid propellant. Recently, several works have been developed in the interactive Optimization Design Strategy and multidisciplinary design optimization. In this study, a new multidisciplinary design optimization approach has been involved in system space design including new disciplines. The design strategy has been successfully applied to design problems faced at space designers. The optimizer tool developed for interactive Optimization Design Strategy based on Heuristic Algorithms (Gravitational Search Algorithm, Stochastic Fractal Search, and Search Group Algorithm) proof the highest performance in terms of quality and convergence. The results of virtual reality manufacturing tool presented in this paper are significant in the preliminary system space design which presents an effective approach of development by reducing the cost and the time of analysis and that tool could help decision-makers to understand better the range of possibilities that confront them.

Keywords

Interactive design Heuristic algorithm Launch vehicle satellite Vibro-acoustic Product design CAD Coupled system Virtual reality manufacturing 

List of symbols

Abbreviations

MDO

Multidisciplinary Design Optimization

MDF

Multi-Disciplinary Feasible

LVS

Launch Vehicle Satellite

XDSM

eXtended Design Structure Matrix

Algorithms

SFS

Stochastic Fractal Search

SGA

Search Group Algorithm

GSA

Gravitational Search Algorithm

Launch vehicle satellite

GLM

Gross Launch Mass

mf

The final mass

mi

The initial mass

Msat

The mass of satellite

mstr

The structural mass

mp

The useful propellant mass

Dstage

Stage Diameter

λ

Payload ratio

Sf

Surface of launch vehicle fairing

Lf

Length of launch vehicle fairing

ρ

Density of composition material

e

Thickness of launch vehicle fairing

Mfairing

Mass of launch vehicle fairing

Propulsion

ΔVmission

Increment velocity of mission

T

Thrust

Q

Mass flow

ve

Velocity ejection of gas

AN

Nozzle area

DN

Nozzle diameters

\( P_{c} \)

Combustion pressure

Patm

Atmospheric pressure

Tc

Temperature combustion

\( V_{lox} , V_{{H_{2} }} \)

Volume of propellant thank

\( R_{m} \)

Mixture ratio

\( \rho_{lox} \)

Density of propellant

ΔVmission

Velocity Increment

Trajectory

\( {\text{R}} \)

The radius of orbit

\( \upmu \)

The gravitational parameter of planet

g

The gravitational acceleration

γ

The flight path angle

\( {\text{D}} \)

The drag force

\( m^{{\prime }} \)

The mass of rocket at each time

ρ

Density of air

v

Velocity of vehicle

h

Height above ground

Aerodynamic

Sref

Cross-sectional area of launch vehicle

Cd

Coefficient based on geometry of fairing

g0

The gravitational acceleration

a

The angle of attack

Satellite geometry

Hsat

Height of satellite

Df

Fairing diameter

a

Largest section of satellite

Vibro-acoustic

\( m\;and\;M \)

Represent term and total numbers required in series summation

P0

The incident wave amplitude

Jm

Bessel’s function of first kind

\( H_{m} \)

Hankel’s function

mth

Order for variable coefficients

Am

Coefficient

\( \gamma_{m} \)

Phase angles

k

Wave number

φ

Azimuthally angle

WAO

Overall acoustic power

η

Acoustic efficiency

nA

Number of nozzles

\( {\text{f}}_{{{\text{nat}}l}} \)

The lateral natural frequency

δl

The lateral deflection

\( {\text{f}}_{{{\text{nat}}a}} \)

The axial natural frequency

δa

The axial deflection

E

Young modulus

L

Satellite length

I

Area momentum of inertia of satellite

A

Cross-sectional area of satellite

n

Load factor

Notes

Acknowledgement

The authors wish to thank the Electrical Engineering Faculty of the University of Sciences and Technology of Oran and the Center of Satellites Development for their support to perform this project.

References

  1. 1.
    Hunsaker, T., Bille, M. A., Kolodziejski, P.: Nanosat launch vehicle: a global perspective and business case. In: Proceedings of the AIAA SPACE 2013 Conference and Exposition, AIAA Paper 2013–5513 (2013)Google Scholar
  2. 2.
    Buchen, E.M.S.: Nano/Microsatellite Market Assessment. SpaceWorks Enterprises Inc. (SEI), Atlanta (2014)Google Scholar
  3. 3.
    Tappeta, R., Renaud, J., Rodríguez, J.: An interactive multiobjective optimization design strategy for decision based multidisciplinary design. Eng Optim 34(5), 523–544 (2002)CrossRefGoogle Scholar
  4. 4.
    Sobieszczanski, S.J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. Struct. Multidiscip. Optim. 14(1), 1–23 (1997)CrossRefGoogle Scholar
  5. 5.
    Rafique, A.F., Linshu, H., Kamran, A., Zeeshan, Q.: Hyper heuristic approach for design and optimization of satellite launch vehicle. Chin. J. Aeronaut. 24, 150–163 (2011)CrossRefGoogle Scholar
  6. 6.
    Balesdent, M.: New MDO approaches for Launch Vehicle Design. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. Sage 227(10), 1545–1555 (2013)CrossRefGoogle Scholar
  7. 7.
    Zakeri, M., Nosratollahi, M., Novinzade, A.: Multi-disciplinary system design optimization of a launch vehicle upper-stage. J. Aerosp. Technol. Manag. São José dos Campos. 9, 48–62 (2017)CrossRefGoogle Scholar
  8. 8.
    Afilipoae, T.P., et al.: Launch vehicle-MDO in the development of a Microlauncher. Transp. Res. Proc. 29, 1–11 (2018)CrossRefGoogle Scholar
  9. 9.
    Zafrane, M.A., Boudjemai, A., Boughanmi, N: Multidisciplinary design optimization of the acoustic interaction between the satellite and launch vehicle. In: 6th International Conference on Recent Advances in Space Technologies, pp. 577–588. IEEE (2013)Google Scholar
  10. 10.
    Cárcamo, J.G., Trefftz, H., Acosta, D.A., Botero, L.F.: Collaborative design model review in the AEC industry. Int. J. Interact. Design Manuf. 11, 931–947 (2016)CrossRefGoogle Scholar
  11. 11.
    Haftka, R.T.: Integrated structure-control optimization of space structures. In: Proceedings of the 30th Structures, Structural Dynamics, and Materials Conference, pp. 1-9. Conference of AIAA, Long Beach (1990)Google Scholar
  12. 12.
    Adelman, H.M.: Integrated multidisciplinary design optimization of rotorcraft. J. Aircr. 28(1), 22–28 (1991)CrossRefGoogle Scholar
  13. 13.
    Barthelemy J.F.: Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing. In: Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Dallas, TX, (1992)Google Scholar
  14. 14.
    August, R.: Integrated structural-aerodynamic analyzer. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio (1992)Google Scholar
  15. 15.
    Claus, R.E., Evans, A.L., Riley, M.F.: Multidisciplinary propulsion simulation using NPSS. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio, pp. 53–62 (1992)Google Scholar
  16. 16.
    Cramer, E., Frank, P., Shubin, G., Dennis, J., Lewis, R.: On alternative problem formulations for multidisciplinary design optimization. Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio, vol. 92, pp. 47–52 (1992)Google Scholar
  17. 17.
    Chattopadhyay, A.: Multidisciplinary optimization and design variable sensitivity of helicopter rotor blades using a composite beam model. Compos. Eng. 3(7–8), 585–599 (1993)CrossRefGoogle Scholar
  18. 18.
    Cramer, E.J., Dennis, J.E., Frank, P.D., Lewis, R.M., Shubin, G.R.: Problem formulation for multidisciplinary optimization. SIAM J. Optim. 4(4), 754–776 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gage, P.J., Braun, R.D., Kroo, I.M.: Interplanetary trajectory optimization using a genetic algorithm. J. Astronaut. Sci. 43(1), 59–76 (1995)Google Scholar
  20. 20.
    Gage, P.: New approaches to optimization in aerospace conceptual design. In: NASA CR-196695 (1995)Google Scholar
  21. 21.
    Ullah, R., Zhou, D., Zhou, P., Hussain, M., Amjad Sohail, M.: Approaches for space launch vehicle conceptual design and multi-attribute evaluation. Aerosp. Sci. Technol. 25, 65–74 (2013)CrossRefGoogle Scholar
  22. 22.
    Larson, W.J., Wertz, J.R.: Space Mission Analysis and Design, 3rd edn. Space Technology Library, Vol. 8 (1999) (ISBN: 1-881883-10-8)Google Scholar
  23. 23.
    Paul, A.C., Claudio, B., Bernd, C.: Future Spacecraft Propulsion Systems and Integration. Springer, Berlin (2018)Google Scholar
  24. 24.
    Zafrane, M.A., Boudjemai, A., Boughanmi, N.: Multidisciplinary design optimization of the acoustic interaction between the satellite and launch vehicle. 6th Recent Advances in space Technologies, IEEE, pp. 577–582 (2013)Google Scholar
  25. 25.
    Salem, H., Boutchicha, D., Boudjemai, A.: Modal analysis of the multi-shaped coupled honeycomb structures used in satellites structural design. Int. J. Interact. Design Manuf. 12(3), 955–967 (2018)CrossRefGoogle Scholar
  26. 26.
    Morshed M.M.M.: Investigation of External Acoustic Loading on a Launch Vehicle Fairing During Lift-off. Ph.D. Dissertation, School of Mechanical Engineering, The University of Adelaide, SA, Australia (2008)Google Scholar
  27. 27.
    Pellissetti, M.F., Fransen, S.H.J.A., Pradlwarter, H.J., Calci, A., Schuller, G.I., Klein, M.: Stochastic launcher-satellite coupled dynamic analysis. J. Spacecr. Rocket 43(6), 1308–1318 (2006)CrossRefGoogle Scholar
  28. 28.
    Calvi, A.: Uncertainty-based loads analysis for spacecraft: finite element model validation and dynamic responses. Comput. Struct. J. 83(14), 1103–1112 (2005)CrossRefGoogle Scholar
  29. 29.
    Morshed, M.M.M.: Prediction of exterior sound pressure field of a cylinder using the boundary element method. Proc. Eng. 56, 857–863 (2013)CrossRefGoogle Scholar
  30. 30.
    Morse, P.M.: Vibration and Sound, 1st edn. International series in physics. McGraw-Hill book company, Inc, New York, London (1936)Google Scholar
  31. 31.
    Fahy, F.: Sound and Structure Vibration, 1st edn. Elsivier, London (1987) (ISBN: 9780080517377)Google Scholar
  32. 32.
    Filippi, P., Bergassoli, A., Habault, D., Lefebvre, J.: Acoustics: Basic Physics, Theory, and Methods, 1st edn. Elsivier (1999), eBook. ISBN: 9780080498553Google Scholar
  33. 33.
    Wertz, J.R., Larson, W.: Space Mission Analysis and Design, Space Technology Library. Springer, Berlin (1999)Google Scholar
  34. 34.
    Pourrajabian, A., Bakhtiari, M., Ebrahimi, R., Karimi, H.: Optimization of nose shape of Launch Vehicle using genetic algorithm and response surface methods. In: 4th International Conference on Recent Advances in Space Technologies, pp. 221–225. IEEE (2009)Google Scholar
  35. 35.
    Jamilnia, R., Naghash, A.: Simultaneous optimization of staging and trajectory of launch vehicles using two different approaches. Aerosp. Sci. Technol. 23, 85–92 (2012)CrossRefGoogle Scholar
  36. 36.
    Lambe, A.B.: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim. 46(2), 273–284 (2012)CrossRefGoogle Scholar
  37. 37.
    Buzuku, S., Kraslawski, A.: Use of design structure matrix for analysis of critical barriers in implementing eco-design initiatives in the pulp and paper industry. Proc. Manuf. 11, 742–750 (2017)Google Scholar
  38. 38.
    Hamid, S.: Stochastic fractal search: a powerful metaheuristic algorithm. Knowl. Syst. 75, 1–18 (2015)CrossRefGoogle Scholar
  39. 39.
    Noor, H., Mostafa, Z.A., Suganthan, E.: A decremental stochastic fractal differential evolution for global numerical optimization. Inf. Sci. 372, 470–491 (2016)CrossRefGoogle Scholar
  40. 40.
    Mohamed, A.M., Enrico, Z.: A penalty guided stochastic fractal search approach for system reliability optimization. Reliab. Eng. Syst. Saf. 152, 213–227 (2016)CrossRefGoogle Scholar
  41. 41.
    Soheyl, K., Saman, K.: A robust stochastic fractal search approach for optimization of the surface grinding process. Swarm Evol. Comput. 38, 173–186 (2018)CrossRefGoogle Scholar
  42. 42.
    Tuan, A.Z., Rahman, A., Nawal, A.A.: Active vibration control of a flexible beam structure using chaotic fractal search algorithm. Proc. Eng. 170, 299–306 (2017)CrossRefGoogle Scholar
  43. 43.
    Hossam, M., El-Hawary, M.E.: Optimization of neural network parameters by stochastic fractal search for dynamic state estimation under communication failure. Electr. Power Syst. Res. 147, 288–301 (2017)CrossRefGoogle Scholar
  44. 44.
    Gonçalves, M.S., Lopez, R.H., Miguel, L.F.F.: Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput. Struct. 153, 165–184 (2015)CrossRefGoogle Scholar
  45. 45.
    Manijeh, A., Saeed, T., Heresh, S.: Improved group search optimization algorithm for coordination of directional overcurrent relays. Swarm Evol Comput. 23, 40–49 (2015)CrossRefGoogle Scholar
  46. 46.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefGoogle Scholar
  47. 47.
    De Moura Oliveira, P.B., Solteiro Pires, E.J., Novais, P.: Design of posicast PID control systems using a gravitational search algorithm. Neurocomputing 167, 18–23 (2015)CrossRefGoogle Scholar
  48. 48.
    Sushama, N., Sanchit, A., Sangeeta, D.: Feature selection using gravitational search algorithm for biomedical data. Proc. Comput. Sci. 115, 258–265 (2017)CrossRefGoogle Scholar
  49. 49.
    Illias, H.A., Mou, K.J., Bakar, A.H.A.: Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms. Swarm Evol Comput 36, 18–26 (2017)CrossRefGoogle Scholar
  50. 50.
    Biswa, B., Mangaraj, P.S.: An optimal LAA subsystem designed using gravitational search algorithm. Eng. Sci. Technol. Int. J. 20, 494–501 (2017)CrossRefGoogle Scholar
  51. 51.
    Niemeyer, L., Pietronero, L., Wiesmann, H.J.: Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52(12), 1033–1036 (1984)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Barone, S., Paoli, A., Razionale, A.V., Savignano, R.: Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances. Int. J. Interact. Design Manuf. 10, 387–400 (2016)CrossRefGoogle Scholar
  53. 53.
    Wang, Z., Zhang, Q., Liu, Y., Zhang, Z.: A robust and accurate geometric model for automated design of drawbeads in sheet metal forming. Comput. Aided Des. 92, 42–57 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Mohammed Amine Zafrane
    • 1
  • Abdelamdjid Boudjemai
    • 2
  • Nabil Boughanmi
    • 3
  1. 1.Laboratoire de Recherche en Système Intelligent (LARESI), Département d’électroniqueUniversité des Sciences et de la Technologied’Oran Mohamed Boudiaf, USTO-MbOranAlgeria
  2. 2.Center of Satellite DevelopmentOranAlgeria
  3. 3.Research Laboratory in Intelligent Systems, Department of ElectronicUniversité des Sciences et de la Technologied’Oran Mohamed Boudiaf, USTO-MbOranAlgeria

Personalised recommendations