Interactive design of space manufacturing systems, optimality and opportunity

  • Mohammed Amine Zafrane
  • Abdelamdjid Boudjemai
  • Nabil Boughanmi
Technical Paper


Increasing competitiveness in the space market, forces the industrialists and to pursuit ways to manufacture a high quality product at a minimal cost, to reduce the risk, optimize manufacturing cost and time, the developers have promoted focus on the interactive design of the products. This research focuses on Interactive Multidisciplinary Design and Optimization of Launch Vehicle Satellite with a three-stage liquid propellant. Recently, several works have been developed in the interactive Optimization Design Strategy and multidisciplinary design optimization. In this study, a new multidisciplinary design optimization approach has been involved in system space design including new disciplines. The design strategy has been successfully applied to design problems faced at space designers. The optimizer tool developed for interactive Optimization Design Strategy based on Heuristic Algorithms (Gravitational Search Algorithm, Stochastic Fractal Search, and Search Group Algorithm) proof the highest performance in terms of quality and convergence. The results of virtual reality manufacturing tool presented in this paper are significant in the preliminary system space design which presents an effective approach of development by reducing the cost and the time of analysis and that tool could help decision-makers to understand better the range of possibilities that confront them.


Interactive design Heuristic algorithm Launch vehicle satellite Vibro-acoustic Product design CAD Coupled system Virtual reality manufacturing 

List of symbols



Multidisciplinary Design Optimization


Multi-Disciplinary Feasible


Launch Vehicle Satellite


eXtended Design Structure Matrix



Stochastic Fractal Search


Search Group Algorithm


Gravitational Search Algorithm

Launch vehicle satellite


Gross Launch Mass


The final mass


The initial mass


The mass of satellite


The structural mass


The useful propellant mass


Stage Diameter


Payload ratio


Surface of launch vehicle fairing


Length of launch vehicle fairing


Density of composition material


Thickness of launch vehicle fairing


Mass of launch vehicle fairing



Increment velocity of mission




Mass flow


Velocity ejection of gas


Nozzle area


Nozzle diameters

\( P_{c} \)

Combustion pressure


Atmospheric pressure


Temperature combustion

\( V_{lox} , V_{{H_{2} }} \)

Volume of propellant thank

\( R_{m} \)

Mixture ratio

\( \rho_{lox} \)

Density of propellant


Velocity Increment


\( {\text{R}} \)

The radius of orbit

\( \upmu \)

The gravitational parameter of planet


The gravitational acceleration


The flight path angle

\( {\text{D}} \)

The drag force

\( m^{{\prime }} \)

The mass of rocket at each time


Density of air


Velocity of vehicle


Height above ground



Cross-sectional area of launch vehicle


Coefficient based on geometry of fairing


The gravitational acceleration


The angle of attack

Satellite geometry


Height of satellite


Fairing diameter


Largest section of satellite


\( m\;and\;M \)

Represent term and total numbers required in series summation


The incident wave amplitude


Bessel’s function of first kind

\( H_{m} \)

Hankel’s function


Order for variable coefficients



\( \gamma_{m} \)

Phase angles


Wave number


Azimuthally angle


Overall acoustic power


Acoustic efficiency


Number of nozzles

\( {\text{f}}_{{{\text{nat}}l}} \)

The lateral natural frequency


The lateral deflection

\( {\text{f}}_{{{\text{nat}}a}} \)

The axial natural frequency


The axial deflection


Young modulus


Satellite length


Area momentum of inertia of satellite


Cross-sectional area of satellite


Load factor



The authors wish to thank the Electrical Engineering Faculty of the University of Sciences and Technology of Oran and the Center of Satellites Development for their support to perform this project.


  1. 1.
    Hunsaker, T., Bille, M. A., Kolodziejski, P.: Nanosat launch vehicle: a global perspective and business case. In: Proceedings of the AIAA SPACE 2013 Conference and Exposition, AIAA Paper 2013–5513 (2013)Google Scholar
  2. 2.
    Buchen, E.M.S.: Nano/Microsatellite Market Assessment. SpaceWorks Enterprises Inc. (SEI), Atlanta (2014)Google Scholar
  3. 3.
    Tappeta, R., Renaud, J., Rodríguez, J.: An interactive multiobjective optimization design strategy for decision based multidisciplinary design. Eng Optim 34(5), 523–544 (2002)CrossRefGoogle Scholar
  4. 4.
    Sobieszczanski, S.J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. Struct. Multidiscip. Optim. 14(1), 1–23 (1997)CrossRefGoogle Scholar
  5. 5.
    Rafique, A.F., Linshu, H., Kamran, A., Zeeshan, Q.: Hyper heuristic approach for design and optimization of satellite launch vehicle. Chin. J. Aeronaut. 24, 150–163 (2011)CrossRefGoogle Scholar
  6. 6.
    Balesdent, M.: New MDO approaches for Launch Vehicle Design. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. Sage 227(10), 1545–1555 (2013)CrossRefGoogle Scholar
  7. 7.
    Zakeri, M., Nosratollahi, M., Novinzade, A.: Multi-disciplinary system design optimization of a launch vehicle upper-stage. J. Aerosp. Technol. Manag. São José dos Campos. 9, 48–62 (2017)CrossRefGoogle Scholar
  8. 8.
    Afilipoae, T.P., et al.: Launch vehicle-MDO in the development of a Microlauncher. Transp. Res. Proc. 29, 1–11 (2018)CrossRefGoogle Scholar
  9. 9.
    Zafrane, M.A., Boudjemai, A., Boughanmi, N: Multidisciplinary design optimization of the acoustic interaction between the satellite and launch vehicle. In: 6th International Conference on Recent Advances in Space Technologies, pp. 577–588. IEEE (2013)Google Scholar
  10. 10.
    Cárcamo, J.G., Trefftz, H., Acosta, D.A., Botero, L.F.: Collaborative design model review in the AEC industry. Int. J. Interact. Design Manuf. 11, 931–947 (2016)CrossRefGoogle Scholar
  11. 11.
    Haftka, R.T.: Integrated structure-control optimization of space structures. In: Proceedings of the 30th Structures, Structural Dynamics, and Materials Conference, pp. 1-9. Conference of AIAA, Long Beach (1990)Google Scholar
  12. 12.
    Adelman, H.M.: Integrated multidisciplinary design optimization of rotorcraft. J. Aircr. 28(1), 22–28 (1991)CrossRefGoogle Scholar
  13. 13.
    Barthelemy J.F.: Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing. In: Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Dallas, TX, (1992)Google Scholar
  14. 14.
    August, R.: Integrated structural-aerodynamic analyzer. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio (1992)Google Scholar
  15. 15.
    Claus, R.E., Evans, A.L., Riley, M.F.: Multidisciplinary propulsion simulation using NPSS. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio, pp. 53–62 (1992)Google Scholar
  16. 16.
    Cramer, E., Frank, P., Shubin, G., Dennis, J., Lewis, R.: On alternative problem formulations for multidisciplinary design optimization. Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio, vol. 92, pp. 47–52 (1992)Google Scholar
  17. 17.
    Chattopadhyay, A.: Multidisciplinary optimization and design variable sensitivity of helicopter rotor blades using a composite beam model. Compos. Eng. 3(7–8), 585–599 (1993)CrossRefGoogle Scholar
  18. 18.
    Cramer, E.J., Dennis, J.E., Frank, P.D., Lewis, R.M., Shubin, G.R.: Problem formulation for multidisciplinary optimization. SIAM J. Optim. 4(4), 754–776 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gage, P.J., Braun, R.D., Kroo, I.M.: Interplanetary trajectory optimization using a genetic algorithm. J. Astronaut. Sci. 43(1), 59–76 (1995)Google Scholar
  20. 20.
    Gage, P.: New approaches to optimization in aerospace conceptual design. In: NASA CR-196695 (1995)Google Scholar
  21. 21.
    Ullah, R., Zhou, D., Zhou, P., Hussain, M., Amjad Sohail, M.: Approaches for space launch vehicle conceptual design and multi-attribute evaluation. Aerosp. Sci. Technol. 25, 65–74 (2013)CrossRefGoogle Scholar
  22. 22.
    Larson, W.J., Wertz, J.R.: Space Mission Analysis and Design, 3rd edn. Space Technology Library, Vol. 8 (1999) (ISBN: 1-881883-10-8)Google Scholar
  23. 23.
    Paul, A.C., Claudio, B., Bernd, C.: Future Spacecraft Propulsion Systems and Integration. Springer, Berlin (2018)Google Scholar
  24. 24.
    Zafrane, M.A., Boudjemai, A., Boughanmi, N.: Multidisciplinary design optimization of the acoustic interaction between the satellite and launch vehicle. 6th Recent Advances in space Technologies, IEEE, pp. 577–582 (2013)Google Scholar
  25. 25.
    Salem, H., Boutchicha, D., Boudjemai, A.: Modal analysis of the multi-shaped coupled honeycomb structures used in satellites structural design. Int. J. Interact. Design Manuf. 12(3), 955–967 (2018)CrossRefGoogle Scholar
  26. 26.
    Morshed M.M.M.: Investigation of External Acoustic Loading on a Launch Vehicle Fairing During Lift-off. Ph.D. Dissertation, School of Mechanical Engineering, The University of Adelaide, SA, Australia (2008)Google Scholar
  27. 27.
    Pellissetti, M.F., Fransen, S.H.J.A., Pradlwarter, H.J., Calci, A., Schuller, G.I., Klein, M.: Stochastic launcher-satellite coupled dynamic analysis. J. Spacecr. Rocket 43(6), 1308–1318 (2006)CrossRefGoogle Scholar
  28. 28.
    Calvi, A.: Uncertainty-based loads analysis for spacecraft: finite element model validation and dynamic responses. Comput. Struct. J. 83(14), 1103–1112 (2005)CrossRefGoogle Scholar
  29. 29.
    Morshed, M.M.M.: Prediction of exterior sound pressure field of a cylinder using the boundary element method. Proc. Eng. 56, 857–863 (2013)CrossRefGoogle Scholar
  30. 30.
    Morse, P.M.: Vibration and Sound, 1st edn. International series in physics. McGraw-Hill book company, Inc, New York, London (1936)Google Scholar
  31. 31.
    Fahy, F.: Sound and Structure Vibration, 1st edn. Elsivier, London (1987) (ISBN: 9780080517377)Google Scholar
  32. 32.
    Filippi, P., Bergassoli, A., Habault, D., Lefebvre, J.: Acoustics: Basic Physics, Theory, and Methods, 1st edn. Elsivier (1999), eBook. ISBN: 9780080498553Google Scholar
  33. 33.
    Wertz, J.R., Larson, W.: Space Mission Analysis and Design, Space Technology Library. Springer, Berlin (1999)Google Scholar
  34. 34.
    Pourrajabian, A., Bakhtiari, M., Ebrahimi, R., Karimi, H.: Optimization of nose shape of Launch Vehicle using genetic algorithm and response surface methods. In: 4th International Conference on Recent Advances in Space Technologies, pp. 221–225. IEEE (2009)Google Scholar
  35. 35.
    Jamilnia, R., Naghash, A.: Simultaneous optimization of staging and trajectory of launch vehicles using two different approaches. Aerosp. Sci. Technol. 23, 85–92 (2012)CrossRefGoogle Scholar
  36. 36.
    Lambe, A.B.: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim. 46(2), 273–284 (2012)CrossRefGoogle Scholar
  37. 37.
    Buzuku, S., Kraslawski, A.: Use of design structure matrix for analysis of critical barriers in implementing eco-design initiatives in the pulp and paper industry. Proc. Manuf. 11, 742–750 (2017)Google Scholar
  38. 38.
    Hamid, S.: Stochastic fractal search: a powerful metaheuristic algorithm. Knowl. Syst. 75, 1–18 (2015)CrossRefGoogle Scholar
  39. 39.
    Noor, H., Mostafa, Z.A., Suganthan, E.: A decremental stochastic fractal differential evolution for global numerical optimization. Inf. Sci. 372, 470–491 (2016)CrossRefGoogle Scholar
  40. 40.
    Mohamed, A.M., Enrico, Z.: A penalty guided stochastic fractal search approach for system reliability optimization. Reliab. Eng. Syst. Saf. 152, 213–227 (2016)CrossRefGoogle Scholar
  41. 41.
    Soheyl, K., Saman, K.: A robust stochastic fractal search approach for optimization of the surface grinding process. Swarm Evol. Comput. 38, 173–186 (2018)CrossRefGoogle Scholar
  42. 42.
    Tuan, A.Z., Rahman, A., Nawal, A.A.: Active vibration control of a flexible beam structure using chaotic fractal search algorithm. Proc. Eng. 170, 299–306 (2017)CrossRefGoogle Scholar
  43. 43.
    Hossam, M., El-Hawary, M.E.: Optimization of neural network parameters by stochastic fractal search for dynamic state estimation under communication failure. Electr. Power Syst. Res. 147, 288–301 (2017)CrossRefGoogle Scholar
  44. 44.
    Gonçalves, M.S., Lopez, R.H., Miguel, L.F.F.: Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput. Struct. 153, 165–184 (2015)CrossRefGoogle Scholar
  45. 45.
    Manijeh, A., Saeed, T., Heresh, S.: Improved group search optimization algorithm for coordination of directional overcurrent relays. Swarm Evol Comput. 23, 40–49 (2015)CrossRefGoogle Scholar
  46. 46.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefGoogle Scholar
  47. 47.
    De Moura Oliveira, P.B., Solteiro Pires, E.J., Novais, P.: Design of posicast PID control systems using a gravitational search algorithm. Neurocomputing 167, 18–23 (2015)CrossRefGoogle Scholar
  48. 48.
    Sushama, N., Sanchit, A., Sangeeta, D.: Feature selection using gravitational search algorithm for biomedical data. Proc. Comput. Sci. 115, 258–265 (2017)CrossRefGoogle Scholar
  49. 49.
    Illias, H.A., Mou, K.J., Bakar, A.H.A.: Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms. Swarm Evol Comput 36, 18–26 (2017)CrossRefGoogle Scholar
  50. 50.
    Biswa, B., Mangaraj, P.S.: An optimal LAA subsystem designed using gravitational search algorithm. Eng. Sci. Technol. Int. J. 20, 494–501 (2017)CrossRefGoogle Scholar
  51. 51.
    Niemeyer, L., Pietronero, L., Wiesmann, H.J.: Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52(12), 1033–1036 (1984)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Barone, S., Paoli, A., Razionale, A.V., Savignano, R.: Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances. Int. J. Interact. Design Manuf. 10, 387–400 (2016)CrossRefGoogle Scholar
  53. 53.
    Wang, Z., Zhang, Q., Liu, Y., Zhang, Z.: A robust and accurate geometric model for automated design of drawbeads in sheet metal forming. Comput. Aided Des. 92, 42–57 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Mohammed Amine Zafrane
    • 1
  • Abdelamdjid Boudjemai
    • 2
  • Nabil Boughanmi
    • 3
  1. 1.Laboratoire de Recherche en Système Intelligent (LARESI), Département d’électroniqueUniversité des Sciences et de la Technologied’Oran Mohamed Boudiaf, USTO-MbOranAlgeria
  2. 2.Center of Satellite DevelopmentOranAlgeria
  3. 3.Research Laboratory in Intelligent Systems, Department of ElectronicUniversité des Sciences et de la Technologied’Oran Mohamed Boudiaf, USTO-MbOranAlgeria

Personalised recommendations