A two-bar truss structural model under uncertainty: a uncertain chance constrained geometric programming (UCCGP) approach

Original Paper
  • 6 Downloads

Abstract

In this paper a two-bar truss structural model under uncertainty is developed. Generally coefficients of two-bar truss structural model assume deterministic and precise parameters. However, the values observed for the parameters in real-world into a structural model often are imprecise and vague. Therefore, I have used coefficients are uncertain variables. Here assume the uncertain variables to have expected, variance, 2-ND moment and entropy based zigzag uncertainty distribution, respectively and show that the corresponding uncertain chance constraints two-bar truss structural model can be transformed into crisp problems to calculate the objective values. Geometric programming is one of the best optimization techniques for solving a variety of nonlinear optimization problems and engineering problems. A numerical example is given to illustrate the efficiency of the model through this approximation technique.

Keywords

Uncertainty theory Two-bar truss structural model Linear uncertainty distribution Variance Second moment Entropy 

Mathematics Subject Classification

90C46 65K05 28B99 90C48 49K35 

Notes

References

  1. 1.
    Harris, F.W.: How many parts to make at once. Oper. Res. 38(6), 947 (1990)CrossRefGoogle Scholar
  2. 2.
    Shih, C.J., Lee, H.W.: Level-cut approaches of first and second kind for unique solution design in fuzzy engineering optimization problems. Tamkang J. Sci. Eng. 7(3), 189–198 (2004)Google Scholar
  3. 3.
    Scott, C.H., Jefferson, T.R.: Allocation of resources in project management. Int. J. Syst. Sci. 26, 413–420 (1995)CrossRefMATHGoogle Scholar
  4. 4.
    Duffin, R.J., Peterson, E.L., Zener, C.: Geometric Programming Theory and Applications. Wiley, New York (1967)MATHGoogle Scholar
  5. 5.
    Duffin, R.J., Peterson, E.L.: Geometric programming with signomials. J. Optim. Theory Appl. 11, 3–35 (1973)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Avriel, M., Dembo, R., Passy, U.: Solution of generalized geometric programs. Int. J. Number Methods Eng. 9, 149–168 (1975)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Beightler, C.S., Philips, D.T.: Applied Geometric Programming. Wiley, New York (1976)Google Scholar
  8. 8.
    Dupačová, J., Ecker, J.G., Kupferschmid, M., Sacher, R.S.: Comparison of a special-purpose algorithm with general-purpose algorithms for solving geometric programming problems. J. Optim. Theory Appl. 43, 237–262 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fang, S.C., Peterson, E.L., Rajasekera, J.R.: Controlled dual perturbations for posynomial programs. Eur. J. Oper. Res. 35, 111–117 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Worrall, B.M., Hall, M.A.: The analysis of an inventory control model using posynomial geometric programming. Int. J. Prod. Res. 20, 657–667 (1982)CrossRefGoogle Scholar
  11. 11.
    Choi, J.C., Bricker, D.L.: Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 10, 957–961 (1996)CrossRefMATHGoogle Scholar
  12. 12.
    Jung, H., Klein, C.M.: Optimal inventory policies under decreasing cost functions via geometric programming. Eur. J. Oper. Res. 132, 628–642 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Liu, S.T.: Posynomial geometric programming with interval exponents and coefficients. Eur. J. Oper. Res. 186(1), 17–27 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Liu, S.T.: Profit maximization with quantity discount: an application of geometric program. Appl. Math. Comput. 190(2), 1723–1729 (2007)MathSciNetMATHGoogle Scholar
  15. 15.
    Kortanek, K.O., No, H.: A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier. Optimization 23, 303–322 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kortanek, K.O., Xu, X., Ye, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76, 155–181 (1997)MathSciNetMATHGoogle Scholar
  17. 17.
    Kotb, A.M., Hlaa, A., Fergancy, : Multi-item EOQ model with both demand-depended unit constant varying lead time via geometric programming. Appl. Math. 2011(2), 551–555 (2011)CrossRefGoogle Scholar
  18. 18.
    Chu, C., Wong, D.F.: VLSI circuit performance optimization by geometric programming. Ann. Oper. Res. 105, 37–60 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dupačová, J.: Stochastic geometric programming with an application. Kybernetika 46(3), 374–386 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–369 (1997)CrossRefGoogle Scholar
  21. 21.
    Hershenson, M.D., Boyd, S.P., Lee, T.H.: Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aid. Des. 20, 1–21 (2001)CrossRefGoogle Scholar
  22. 22.
    Avriel, M., Wilde, D.J.: Engineering design under uncertainty. I&EC Process Des. Dev. 8(1), 124–131 (1969)CrossRefGoogle Scholar
  23. 23.
    Islam, S., Roy, T.K.: A fuzzy EPQ model with flexibility and reliability consideration and demand depended unit production cost under a space constraint: a fuzzy geometric programming approach. Appl. Math. Comput. 176(2), 531–544 (2006)MathSciNetMATHGoogle Scholar
  24. 24.
    Islam, S., Roy, T.K.: Multi-objective geometric-programming problem and its application. Yugosl. J. Oper. Res. 20, 213–227 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wang, G.Y., Wang, W.Q.: Fuzzy optimum design of structure. Eng. Optim. 8, 291–300 (1985)CrossRefGoogle Scholar
  26. 26.
    Rao, S.S.: Description and optimum design of fuzzy mathematical systems. J. Mech. Des. 109(1), 126–132 (1987)Google Scholar
  27. 27.
    Rajgopal, J.: An alternative approach to the refined duality theory of geometric programming. J. Math. Anal. Appl. 167, 266–288 (1992)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rajgopal, J., Bricker, D.L.: Solving posynomial geometric programming problems via generalized linear programming. Comput. Optim. Appl. 21, 95–109 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Yeh, Y.C., Hsu, D.S.: Structural optimization with fuzzy parameters. Comput. Struct. 37(6), 917–924 (1990)CrossRefGoogle Scholar
  30. 30.
    Rajgopal, J., Bricker, D.L.: Posynomial geometric programming as a special case of semi-infinite linear programming. J. Optim. Theory Appl. 66, 455–475 (1990)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Xu, C.: Fuzzy optimization of structures by the two-phase method. Comput. Struct. 31(4), 575–580 (1989)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shih, C.J., Chi, C.C., Hsiao, J.H.: Alternative \(\alpha \)-level-cuts methods for optimum structural design with fuzzy resources. Comput. Struct. 81, 2579–2587 (2003)CrossRefGoogle Scholar
  33. 33.
    Peterson, E.L.: The fundamental relations between geometric programming duality, parametric programming duality, and ordinary Lagrangian duality. Ann. Oper. Res. 105, 109–153 (2001)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Li, H.L., Tsai, J.F.: Treating free variables in generalized geometric global optimization programs. J. Glob. Optim. 33, 1–13 (2005)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Yang, H.H., Bricker, D.L.: Investigation of path-following algorithms for signomial geometric programming problems. Eur. J. Oper. Res. 103, 230–241 (1997)CrossRefMATHGoogle Scholar
  36. 36.
    Tsai, J.F., Li, H.L., Hu, N.Z.: Global optimization for signomial discrete programming problems in engineering design. Eng. Optim. 34, 613–622 (2002)CrossRefGoogle Scholar
  37. 37.
    Tsai, J.F., Lin, M.H.: An optimization approach for solving signomial discrete programming problems with free variables. Comput. Chem. Eng. 30, 1256–1263 (2006)CrossRefGoogle Scholar
  38. 38.
    Tsai, J.F., Lin, M.H., Hu, Y.C.: On generalized geometric programming problems with non-positive variables. Eur. J. Oper. Res. 178(1), 10–19 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Tsai, J.F.: Treating free variables in generalized geometric programming problems. Comput. Chem. Eng. 33, 239–243 (2009)CrossRefGoogle Scholar
  40. 40.
    Zhu, J., Kortanek, K.O., Huang, S.: Controlled dual perturbations for central path trajectories in geometric programming. Eur. J. Oper. Res. 73, 524–531 (1992)CrossRefMATHGoogle Scholar
  41. 41.
    Liu, S.T.: A geometric programming approach to profit maximization. Appl. Math. Comput. 182(2), 1093–1097 (2006)MathSciNetMATHGoogle Scholar
  42. 42.
    Lin, M.H., Tsai, J.F.: Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems. Eur. J. Oper. Res. 216, 17–25 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Liu, S.T.: Fuzzy measures for profit maximization with fuzzy parameters. J. Comput. Appl. Math. 236(6), 1333–1342 (2011)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Dey, S., Roy, T.K.: Optimum shape design of structural model with imprecise coefficient by parametric geometric programming. Decis. Sci. Lett. 4(2015), 407–418 (2015)CrossRefGoogle Scholar
  45. 45.
    Samadi, F., Mirzazadeh, A., Pedram, M.: Fuzzy pricing, marketing and service planning in a fuzzy inventory model: a geometric programming approach. Appl. Math. Model. 37, 6683–6694 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Sadjadi, S.J., Hamidi Hesarsorkh, A., Mohammadi, M., Bonyadi Naeini, A.: Joint pricing and production management: a geometric programming approach with consideration of cubic production cost function. J. Ind. Eng. Int. 11(2), 209–223 (2015)CrossRefGoogle Scholar
  47. 47.
    Nasseri, S.H., Alizadeh, Z.: Optimized solution of a two-bar truss nonlinear problem using fuzzy geometric programming. J. Nonlinear Anal. Appl. (2014).  https://doi.org/10.5899/2014/jnaa-00230 Google Scholar
  48. 48.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Liu, B.: Uncertainty Theory, 4th edn. Springer, Berlin (2015)MATHGoogle Scholar
  50. 50.
    Liu, B.: Some research problems in uncertainty theory. J. Uncertain. Syst. 3(1), 3–10 (2009)Google Scholar
  51. 51.
    Liu, B.: Uncertain risk analysis and uncertain reliability analysis. J. Uncertain. Syst. 4(3), 163–170 (2010)Google Scholar
  52. 52.
    Peng, J., Yao, K.: A new option pricing model for stocks in uncertainty markets. Int. J. Oper. Res. 8(2), 18–26 (2011)MathSciNetGoogle Scholar
  53. 53.
    Li, S., Peng, J., Zhang, B.: The uncertain premium principle based on the distortion function. Insur. Math. Econ. 53, 317–324 (2013)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Liu, B.: Uncertain set theory and uncertain inference rule with application to uncertain control. J. Uncertain. Syst. 4(2), 83–98 (2010)Google Scholar
  55. 55.
    Liu, S.T.: Posynomial geometric programming with parametric uncertainty. Eur. J. Oper. Res. 168, 345–353 (2006)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Han, S., Peng, Z., Wang, S.: The maximum flow problem of uncertain network. Inform. Sci. 265, 167–175 (2014)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Ding, S.: The \(\alpha \)-maximum flow model with uncertain capacities. Appl. Math. Model. 39(7), 2056–2063 (2015)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Zhu, Y.: Uncertain optimal control with application to a portfolio selection model. Cybern. Syst. 41(7), 535–547 (2010)CrossRefMATHGoogle Scholar
  59. 59.
    Wang, X.S., Gao, Z.C., Guo, H.Y.: Delphi method for estimating uncertainty distributions. Information 15(2), 449–460 (2012)MathSciNetMATHGoogle Scholar
  60. 60.
    Wang, X.S., Gao, Z.C., Guo, H.Y.: Uncertain hypothesis testing for expert’s empirical data. Math. Comput. Model. 55(3–4), 1478–1482 (2012)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Madjid, T., et al.: Solving geometric programming problems with normal, linear and zigzag uncertainty. J. Optim. Theory Appl. 170, 243–265 (2016). (2015)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Mandal, W.A.: Multi-objective geometric programming problem under uncertainty. Oper. Res. Decis. 27(4), 85–109 (2018)Google Scholar
  63. 63.
    Schmit, L.A.: Structural synthesis—its genesis and development. AIAA J. 119(10), 1249–1263 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beldanga D.H.Sr.MadrasahBeldanga, MurshidabadIndia

Personalised recommendations