Skip to main content

Advertisement

Log in

Interactive control of combustion stability and operating limits in a biogas-fueled spark ignition engine with high compression ratio

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The use of high compression ratios on spark ignition engines enables the increase of thermal efficiency, but also contributes to the reduction of high load limit because of the higher auto-ignition tendency in the end-gas. Gaseous fuels provide a good option to expand the high load limits because of their high octane ratings, mostly in small engines. Biogas is a renewable fuel, mainly composed by \(\hbox {CH}_{4}\) and \(\hbox {CO}_{2}\) that exhibits high auto-ignition temperature and slow laminar flame speed. When biogas is burned in spark ignition engines partial and total misfire at low loads counteract the benefits achieved at high loads in which knocking combustion is reduced, hence the design of an effective control of the operating range based on the real-time observation of combustion instabilities is desirable. This paper presents an interactive control of the safe operating range through the modification of the spark time, equivalent ratio and throttle valve opening, taking as feedback the combustion instabilities, which are calculated from the in-cylinder pressure evolution for a biogas-fueled high compression ratio spark ignition engine. The interactive control was tested on a modified diesel engine converted to spark-ignition, original compression ratio of 15.5:1 and fueled with biogas. Control was able to keep a safe operating range with a maximum throttle valve opening of 39%, equivalence ratios within 0.6 and 1, and spark advances in the range of 329–358 crank angle degree. The coefficient of variation of IMEP was lower than 8%, whereas the maximum average knocking intensity was close to 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bedoya, I.D., Arrieta, A.A., Cadavid, F.J.: Effects of mixing system and pilot fuel quality on diesel–biogas dual fuel engine performance. Bioresour. Technol. 100(24), 6624–6629 (2009). ISSN 0960-8524

    Article  Google Scholar 

  2. Ibrahim, M.M., Narasimhan, J.V., Ramesh, A.: Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels. Energy 89, 990–1000 (2015). ISSN 0360-54

    Article  Google Scholar 

  3. Barik, D., Murugan, S.: Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode. Energy 72, 760–771 (2014). ISSN 0360-5442

    Article  Google Scholar 

  4. Muñoz, M., et al.: Low heating value gas on spark ignition engines. Biomass Bioenergy 18(5), 431–439 (2000)

    Article  Google Scholar 

  5. Ando, Y., et al.: Research and development of a low-BTU gas-driven engine for waste gasification and power generation. Energy 30(11–12), 2206–2218 (2005)

    Article  Google Scholar 

  6. Shah, A., et al.: Performance and emissions of a spark-ignited engine driven generator on biomass based syngas. Bioresour. Technol. 101(12), 4656–61 (2010)

    Article  Google Scholar 

  7. Porpatham, E., et al.: Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int. J. Hydrog. Energy 32(12), 2057–2065 (2007)

    Article  Google Scholar 

  8. Nand, K., et al.: Anaerobic digestion of canteen wastes for Biogas production: process optimisation. Process Biochem. 26(1), 1–5 (1991)

    Article  MathSciNet  Google Scholar 

  9. Raman, P., Ram, N.K.: Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines. Energy 63, 317–333 (2013)

    Article  Google Scholar 

  10. Homdoung, N., et al.: Performance and emissions of a modified small engine operated on producer gas. Energy Convers. Manag. 94, 286–292 (2015)

    Article  Google Scholar 

  11. Felipe, A., Amaya, D., Gabriel, A., Torres, D.: First and second thermodynamic law analyses applied to spark ignition engines modelling and emissions prediction. Int. J. Interact. Des. Manuf. 10, 401–415 (2014)

    Google Scholar 

  12. Amaya, A.F.D., Gabriel, A., Torres, D., Acosta, D.A.: Control of emissions in an internal combustion engine? first approach for sustainable design. Int. J. Interact. Des. Manuf. 10, 275–289 (2016)

    Article  Google Scholar 

  13. Heywood, J.B.: Combustion and Its Modeling in Spark-Ignition, p. 02139. MIT Cambridge, Mass. (1994). Sloan Automotive Laboratory

    Google Scholar 

  14. Maly, R.: Spark ignition: its physics and effect on the internal combustion process. In: Hilliard, J.C., Springer, G.S. (eds.) Fuel Economy in Roads Vehicles Powered by Spark Ignition Engines. Plenum Press, New York (1984). (Chap. 3)

    Google Scholar 

  15. Refael, S., Sher, E.: A theoretical study of ignition of a reactive medium by means of an electrical discharge. Combust. Flame 59, 17–30 (1985)

    Article  Google Scholar 

  16. Sher, E., Ben-Ya’ish, J., Kravchik, T.: On the birth of a spark channel. Combust. Flame 89, 186–194 (1992)

    Article  Google Scholar 

  17. Atkins, R.D.: An Introduction to Engine Testing and Development. SAE International, Warrendale (2009)

    Book  Google Scholar 

  18. Jatana, G.S., et al.: Strategies for high efficiency and stability in biogas-fuelled small engines. Exp. Therm. Fluid Sci. 54, 189–195 (2014)

    Article  Google Scholar 

  19. Zhen, X., et al.: Numerical analysis on knock for a high compression ratio spark-ignition methanol engine. Fuel 103, 892–898 (2013)

    Article  Google Scholar 

  20. Zhen, X., et al.: Study of knock in a high compression ratio spark-ignition methanol engine by multi-dimensional simulation. Energy 50, 150–159 (2013)

    Article  Google Scholar 

  21. Molina, D., Restrepo, F., Bedoya, I.: Combustion monitoring system on a natural gas fuelled spark ignition engine with high compression ratio using ionization current sensors. Energy Sustain. VI 195, 209–218 (2015)

    Google Scholar 

  22. Castaño, E., Heredia, S.: Diseño e implementacion de una metodologia para la adquisicion de datos experimentales en un banco de motores de combustion interna. Universidad de Antioquia, Grupo GASURE (2015)

  23. Heywood, J.B., Vilchis, F.R.: Comparison of flame development in a SI engine fuelled with propane and hydrogen? Combust. Sci. Technol. 38, 313–324 (1984)

    Article  Google Scholar 

  24. Bilcan, A,: Contribution a l’etude du cycle thermodynamique de moteurs fonctionannat en Dual-Fuel. These de doctorat. Ecole doctorale mecanique, thermique et genie civil, Uniersite de Nantes (2003)

  25. Hohenberg, G.: Advanced approaches for heat transfer calculation. SAE Paper 790825

  26. Heywood, J.B.: Internal Combustion Engine Fundamentals, vol. 21. McGraw Hill Inc., New York (1988)

    Google Scholar 

  27. Montoya, G., Pablo, J., Arrieta A.A.A.: Estudio para determinar las condiciones óptimas de operación de un motor de encendido provocado, con alta relación de compresión, con combustibles gaseosos de origen renovable, Universidad de Antioquia

Download references

Acknowledgements

The authors express thanks to Vicerrectoría de Investigación of the University of Antioquia for giving financial support to this research through the institutional program: “Programa de Sostenibilidad de Grupos de Investigación 2014–2015”, and through the research project: “Estudio y optimización del desempeño de un motor diesel en modo encendido provocado con mezclas de gas natural y combustibles gaseosos de origen renovable”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jaramillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo, J., Zapata, J. & Bedoya, I.D. Interactive control of combustion stability and operating limits in a biogas-fueled spark ignition engine with high compression ratio. Int J Interact Des Manuf 12, 929–942 (2018). https://doi.org/10.1007/s12008-017-0446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-017-0446-4

Keywords

Navigation