Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances

  • S. Barone
  • A. PaoliEmail author
  • A. V. Razionale
  • R. Savignano
Original Paper


In the field of orthodontics, the use of Removable Thermoplastic Appliances (RTAs) to treat moderate malocclusion problems is progressively replacing traditional fixed brackets. Generally, these orthodontic devices are designed on the basis of individual anatomies and customised requirements. However, many elements may affect the effectiveness of a RTA-based therapy: accuracies of anatomical reference models, clinical treatment strategies, shape features and mechanical properties of the appliances. In this paper, a numerical model for customised orthodontic treatments planning is proposed by means of the finite element method. The model integrates individual patient’s teeth, periodontal ligaments, bone tissue with structural and geometrical attributes of the appliances. The anatomical tissues are reconstructed by a multi-modality imaging technique, which combines 3D data obtained by an optical scanner (visible tissues) and a computerised tomography system (internal tissues). The mechanical interactions between anatomical shapes and appliance models are simulated through finite element analyses. The numerical approach allows a dental technician to predict how the RTA attributes affect tooth movements. In this work, treatments considering rotation movements for a maxillary incisor and a maxillary canine have been analysed by using multi-tooth models.

Graphical Abstract


Orthodontic tooth movement Removable thermoplastic appliance Anatomical modelling Numerical analysis 


  1. 1.
    Boyd, R.L., Waskalic, V.: Three-dimensional diagnosis andorthodontic treatment of complex malocclusions with the invisalign appliance. Seminars Orthodontics 7(4), 274–293 (2001)CrossRefGoogle Scholar
  2. 2.
    Kesling, H.D.: The philosophy of the tooth positioning appliance. Am. J. Orthodontics Or. Surg. 31(6), 297–304 (1945). doi: 10.1016/0096-6347(45)90101-3 CrossRefGoogle Scholar
  3. 3.
    Boyd, R.L.: Esthetic orthodontic treatment using the invisalign appliance for moderate to complex malocclusions. J. Dent. Educ. 72(8), 948–967 (2008)Google Scholar
  4. 4.
    Beers, A.C., Choi, W., Pavlovskaia, E.: Computer-assisted treatment planning and analysis. Orthod. Craniofac. Res. 6(Suppl. 1), 117–125 (2003)CrossRefGoogle Scholar
  5. 5.
    Wong, B.H.: Invisalign A to Z. Am. J. Orthod. Dentofac. Orthop. 121(5), 540–541 (2002). doi: 10.1067/mod.2002.123036 CrossRefGoogle Scholar
  6. 6.
    Padmawar, S., Belludi, A., Bhardwaj, A., Vadvadgi, V., Saini, R.: Study of stress distribution in maxillary anterior region during true intrusion of maxillary incisors using finite element methodology. Int. J. Exp. Dent.Sci. 1(2), 89–92 (2012)CrossRefGoogle Scholar
  7. 7.
    Penedo, N.D., Elias, C.N., Pacheco, M.C.T.: Gouvêa, J.P.d.: 3D simulation of orthodontic tooth movement. Dental Press. J. Orthodontics 15, 98–108 (2010)Google Scholar
  8. 8.
    Field, C., Ichim, I., Swain, M.V., Chan, E., Darendeliler, M.A., Li, W., Li, Q.: Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am. j. orthodontics dentofac. orthopedics: off. publ. Am. Association Orthodontists constituent societies Am. Board Orthodontics 135(2), 174–181 (2009). doi: 10.1016/j.ajodo.2007.03.032 CrossRefGoogle Scholar
  9. 9.
    Cattaneo, P.M., Dalstra, M., Melsen, B.: Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element. Orthodontics Craniofacial Res. 12(2), 120–128 (2009). doi: 10.1111/j.1601-6343.2009.01445.x CrossRefGoogle Scholar
  10. 10.
    Nakajima, A., Murata, M., Tanaka, E., Arai, Y., Fukase, Y., Nishi, Y., Sameshima, G., Shimizu, N.: Development of three-dimensional FE modeling system from the limited cone beam CT images for orthodontic tipping tooth movement. Dent. Mater. J. 26(6), 882–891 (2007)CrossRefGoogle Scholar
  11. 11.
    Dorow, C., Schneider, J., Sander, F.G.: Finite Element Simulation of in Vivo Tooth Mobility in Comparison with Experimental Results. J. Mech. Med. Biol. 3(1), 79–94 (2003). doi: 10.1142/S0219519403000661 CrossRefGoogle Scholar
  12. 12.
    Fill, T.S., Toogood, R.W., Major, P.W., Carey, J.P.: Analytically determined mechanical properties of, and models for the periodontal ligament: Critical review of literature. J. Biomech. 45(1), 9–16 (2012). doi: 10.1016/j.jbiomech.2011.09.020 CrossRefGoogle Scholar
  13. 13.
    Natali, A.N., Pavan, P.G., Scarpa, C.: Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dent. Mater. 20(7), 623–629 (2004). doi: 10.1016/ CrossRefGoogle Scholar
  14. 14.
    Viecilli, R.F., Katona, T.R., Chen, J., Hartsfield, J.K., Roberts, W.E.: Three-dimensional mechanical environment of orthodontic tooth movement and root resorption. Am. J. Orthod. Dentofac. Orthop. 133(6), (2008). doi: 10.1016/j.ajodo.2007.11.023
  15. 15.
    Hahn, W., Dathe, H., Fialka-Fricke, J., Fricke-Zech, S., Zapf, A., Kubein-Meesenburg, D., Sadat-Khonsari, R.: Influence of thermoplastic appliance thickness on the magnitude of force delivered to a maxillary central incisor during tipping. Am. J. Orthod. Dentofac. Orthop. 136(1), (2009). doi: 10.1016/j.ajodo.2008.12.015
  16. 16.
    Hahn, W., Engelke, B., Jung, K., Dathe, H., Fialka-Fricke, J., Kubein-Meesenburg, D., Sadat-Khonsari, R.: Initial forces and moments delivered by removable thermoplastic appliances during rotation of an upper central incisor. Angle Orthod. 80(2), 239–246 (2010). doi: 10.2319/033009-181.1
  17. 17.
    Hahn, W., Fialka-Fricke, J., Dathe, H., Fricke-Zech, S., Zapf, A., Gruber, R., Kubein-Meesenburg, D., Sadat-Khonsari, R.: Initial forces generated by three types of thermoplastic appliances on an upper central incisor during tipping. Eur. J. Orthodont. 31(6), 625–631 (2009). doi: 10.1093/Ejo/Cjp047 CrossRefGoogle Scholar
  18. 18.
    Barbagallo, L.J., Shen, G., Jones, A.S., Swain, M.V., Petocz, P., Darendeliler, M.A.: A novel pressure film approach for determining the force imparted by clear removable thermoplastic appliances. Ann. Biomed. Eng. 36(2), 335–341 (2008). doi: 10.1007/s10439-007-9424-5 CrossRefGoogle Scholar
  19. 19.
    Ryokawa, H., Miyazaki, Y., Fujishima, A., Miyazaki, T., Maki, K.: The mechanical properties of dental thermoplastic materials in a simulated intraoral environment. Orthodontic Waves 65(2), 64–72 (2006). doi: 10.1016/j.odw.2006.03.003 CrossRefGoogle Scholar
  20. 20.
    Kohda, N., Iijima, M., Muguruma, T., Brantley, W.A., Ahluwalia, K.S., Mizoguchi, I.: Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod. 83(3), 476–483 (2013). doi: 10.2319/052512-432.1 CrossRefGoogle Scholar
  21. 21.
    Martorelli, M., Gerbino, S., Giudice, M., Ausiello, P.: A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent. Mater. 29(2), E1–E10 (2013). doi: 10.1016/ CrossRefGoogle Scholar
  22. 22.
    Barone, S., Paoli, A., Razionale, A.V.: Computer-aided modelling of three-dimensional maxillofacial tissues through multi-modal imaging. Proc. Inst. Mechanical Engineers Part H. J. Eng. Med. 227(2), 89–104 (2013). doi: 10.1177/0954411912463869 CrossRefGoogle Scholar
  23. 23.
    Barone, S., Paoli, A., Razionale, A.: Creation of 3D multi-body orthodontic models by using independent imaging sensors. Sensors 13(2), 2033–2050 (2013). doi: 10.3390/s130202033 CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Ru, N., Chen, J., Liu, S.S.-Y., Peng, W.: Finite element modeling for orthodontic biomechanical simulation based on reverse engineering: a case study. Res. J. Appl. Sci. Eng. Technol. 6(17), 3267–3276 (2013)Google Scholar
  25. 25.
    Borak, L., Florian, Z., Bartakova, S., Prachar, P., Murakami, N., Ona, M., Igarashi, Y., Wakabayashi, N.: Bilinear elastic property of the periodontal ligament for simulation using a finite element mandible model. Dent. Mater. J. 30(4), 448–454 (2011). doi: 10.4012/Dmj.2010-170 CrossRefGoogle Scholar
  26. 26.
    Su, M.Z., Chang, H.H., Chiang, Y.C., Cheng, J.H., Fuh, L.J., Wang, C.Y., Lin, C.P.: Modeling viscoelastic behavior of periodontal ligament with nonlinear finite element analysis. J. Dent. Sci. 8(2), 121–128 (2013). doi: 10.1016/j.jds.2013.01.001 CrossRefGoogle Scholar
  27. 27.
    Ross, G.G., Lear, C.S., DeCou, R.: Modeling the lateral movement of teeth. J. Biomech. 9(11), 723–734 (1976). doi: 10.1016/0021-9290(76)90174-3 CrossRefGoogle Scholar
  28. 28.
    Kravitz, N.D., Kusnoto, B., Agran, B., Viana, G.: Influence of attachments and interproximal reduction on the accuracy of canine rotation with invisalign - A prospective clinical study. Angle Orthod. 78(4), 682–687 (2008). doi: 10.2319/060107-263 CrossRefGoogle Scholar
  29. 29.
    Kravitz, N.D., Kusnoto, B., BeGole, E., Obrez, A., Agran, B.: How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am J Orthod Dentofac Orthop 135(1), 27–35 (2009). doi: 10.1016/j.ajodo.2007.05.018
  30. 30.
    Drake, C.T., McGorray, S.P., Dolce, C., Nair, M., Wheeler, T.T.: Orthodontic tooth movement with clear aligners. ISRN Dentistry 2012, 7 (2012). doi: 10.5402/2012/657973
  31. 31.
    Pei, Y.R., Shi, F.H., Chen, H., Wei, J., Zha, H.B., Jiang, R.P., Xu, T.M.: Personalized Tooth Shape Estimation From Radiograph and Cast. Ieee T. BioMed. Eng. 59(9), 2400–2411 (2012). doi: 10.1109/Tbme.2011.2174993 CrossRefGoogle Scholar
  32. 32.
    Barone, S., Paoli, A., Razionale, A.: Customised 3D Tooth Modeling by Minimally Invasive Imaging Modalities. In: SCITEPRESS (ed.) Proc. of 7th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2014), Eseo, Angers, Loire Valley, France, 3–6 March 2014, pp. 70–75. doi:  10.5220/0004912400700075

Copyright information

© Springer-Verlag France 2014

Authors and Affiliations

  • S. Barone
    • 1
  • A. Paoli
    • 1
    Email author
  • A. V. Razionale
    • 1
  • R. Savignano
    • 1
  1. 1.Department of Civil and Industrial EngineeringUniversity of PisaPisaItaly

Personalised recommendations