Advertisement

Taking account of information maturity in assessing product risk

  • Guilain Cabannes
  • Yee Mey Goh
  • Nadège Troussier
  • Thierry Gidel
  • Chris McMahon
Original Paper

Abstract

We focus on the product development process based on virtual prototyping, which allows earlier evaluation of product performance. Uncertainty in information and in the behavioural models used by designers may introduce the risk of under- or over- achieving the product requirements. Two aspects of uncertainty are considered: uncertainty in information content, such as a design parameter that is characterised by a tolerance (\(10\pm 2\,\hbox {mm}\)) and in the behavioural models used to assess the proposed design. Maturity is defined as uncertainty in the context of the design parameters and behavioural models that may evolve in the course of the design process, such as a dimension that has not been fixed and a simplified model that needs to be refined. Risk assessment typically accounts for the content uncertainty (variability) but not the maturity of design information. We propose a method for enriching risk assessment taking into account the maturity of information in risk assessment.

Keywords

Variability Maturity Information  Risk assessment Product performance 

References

  1. 1.
    Ullman David, G.: Toward the ideal mechanical engineering design support system. Res. Eng. Des. 13, 55–64 (2002)Google Scholar
  2. 2.
    Humphrey, W.: Managing the software process. Addison-Wesley Professional, Massachusetts (1989). (ISBN 0-201-18095-2)Google Scholar
  3. 3.
    Coppendale, J.: Manage risk in product and process development and avoid unpleasant surprises. Eng. Manag. J. 5(1), 35–38 (1995)CrossRefGoogle Scholar
  4. 4.
    A Guide to the Project Management Body of Knowledge (PMBOK\(\textregistered \) Guide), Chapter 11. Project Management Institute (2004)Google Scholar
  5. 5.
    Yannou, B., Limayem, F.: La méthode SPEC : Suivi de Performances en cours de Conception. IDMME, Montréal (2000)Google Scholar
  6. 6.
    Kumamoto, H., Henley, E.J.: Probabilistic risk assessment and management for engineers and scientists. IEEE Press, Piscataway (1996)Google Scholar
  7. 7.
    Goh, Y.M., Booker, J.D., McMahon, C.A.: A framework for the handling of uncertainty in engineering knowledge management to aid product development. In: Proceedings of ICED 05: 15th International Conference on Engineering Design, Engineers Australia. Melbourne, Australia (2005)Google Scholar
  8. 8.
    Suh, N.P.: Axiomatic design: advances and applications. The Oxford series on advanced manufacturing. Oxford University Press, New York (2001)Google Scholar
  9. 9.
    Grebici, K., Goh, Y.M., McMahon, C.A.: Uncertainty and risk reduction in engineering design embodiment processes. In: Proceedings of DESIGN 2008, 10th International Design Conference. Dubrovnik, Croatia (2008)Google Scholar
  10. 10.
    Eversheim, W., Roggatz, A., Zimmermann, H.-J., Derichs, T.: Information management for concurrent engineering. Eur. J. Oper. Res. 100(2), 253–265 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Barton R.R., Limayen F., Meckesheimer M., Yannou B.: Using metamodels for modelling propagation of design uncertainties. In: Proceedings of ICE’99, 1999, pp. 521–528. The Hague, Netherlands (1999)Google Scholar
  12. 12.
    Zimmermann, H.-J.: Fuzzy set theory and its applications, Chapter 9. Kluwer Academic Publishers, Boston (1991)CrossRefGoogle Scholar
  13. 13.
    Zio, E., Apostolakis, G.E.: Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories. Reliab. Eng. Syst. Saf. 54, 225–241 (1996)CrossRefGoogle Scholar
  14. 14.
    Zimmermann, H.-J.: An application-oriented view of modeling uncertainty. Eur. J. Oper. Res. 122, 190–198 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Moore, R.E.: Interval analysis. Prentice-Hall, New Jersey (1966)zbMATHGoogle Scholar
  16. 16.
    Antonsson, E.K., Otto, K.N.: Imprecision in engineering design. J. Mech. Des. 117, 25–32 (1995) Google Scholar
  17. 17.
    Sentz K., Ferson S.: Combination of evidence in dempster-shafer theory. Sandia Report (2002)Google Scholar
  18. 18.
    Ferson, S., Donald, S.: Probability bounds analysis. In: International Conference on Probabilistic Safety Assessment and Management (PSAM4), pp. 1203–1208. Springer, New York (1998)Google Scholar
  19. 19.
    Norme X50 117, Management de projet, gestion du risque, management des risques d’un projet. AFNOR (2003)Google Scholar
  20. 20.
    Tassinari, R.: Pratique de l’analyse fonctionelle. Dunod, Paris (1992)Google Scholar
  21. 21.
    Ullman, D.G.: The mechanical design process, 3rd edn. McGraw-Hill, New York (2003)Google Scholar
  22. 22.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering design, a systematic approach, 3rd edn. Springer, New York (2007)Google Scholar
  23. 23.
    Norton, R.L.: Machine design: an integrated approach. Prentice hall, New Jersey (2000)Google Scholar
  24. 24.
    Booker, J.D., Truman, C.E., Wittig, S., Mohammed, Z.A.: A comparison of shrink-fit holding torque using probabilistic, micro-mechanical and experimental approaches. Proc. IMechE Part B J Eng Manuf. 218, 175–187 (2004)CrossRefGoogle Scholar
  25. 25.
    Goh, Y.M.: The incorporation of uncertainty into engineering knowledge management. PhD Thesis, Department of Mechanical Engineering, University of Bristol (2005)Google Scholar

Copyright information

© Springer-Verlag France 2014

Authors and Affiliations

  • Guilain Cabannes
    • 1
  • Yee Mey Goh
    • 2
  • Nadège Troussier
    • 3
  • Thierry Gidel
    • 4
  • Chris McMahon
    • 5
  1. 1.CNRS, Roberval, UMR 6253Université de Technologie de CompiègneCompiègne CedexFrance
  2. 2.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughborough UK
  3. 3.ICD, HETIC, CREIDD, Université de technologie de TroyesUMR 6281, CNRS, Université de technologie de TroyesTroyes CedexFrance
  4. 4.Université de Technologie de Compiègne, EA 2223 CostechCompiègne CedexFrance
  5. 5.Department of Mechanical EngineeringUniversity of BristolBristol UK

Personalised recommendations