A modular architecture for a driving simulator based on the FDMU approach

  • F. De Filippo
  • A. Stork
  • H. Schmedt
  • F. Bruno
Short Original Paper


The present paper describes the development of a modular and easily configurable simulation platform for ground vehicles. This platform should be usable for the implementation of driving simulators employed both in training purposes and in vehicle components testing. In particular, the paper presents a first architectural model for the implementation of a simulation platform based on the Functional Digital Mock-Up approach. This platform will allow engineers to implement different kinds of simulators that integrate both physical and virtual components, thus achieving the possibility to quickly reconfigure the architecture depending on the hardware and software used and on specific test case needs. The platform has been tested by developing a case study that integrates a motion platform, some I/O devices and a simple dynamic ground vehicle model implemented in OpenModelica.


Functional Digital Mock-up  Driving simulator Real time simulation Virtual reality OpenModelica 


  1. 1.
    Bergamasco, M., Avizzano, C.A., Angerilli, M., Carrozzino, M., Facenza, G., Frisoli, A.: Fork-lift truck simulator for training in industrial environment. In: Proceedings of Virtual Concept 2005 (2005)Google Scholar
  2. 2.
    Freeman, J.S., Watson, G., Papelis, Y.E., Lin, T.C.: The Iowa Driving Simulator: An Implementation and Application Overview (1996)Google Scholar
  3. 3.
    Reymond, G., Heidet, A., Canry, M., Kemeny, A.: Validation of Renault’s dynamic simulator for Adaptive Cruise Control experiments. In: Proceedings of the Driving Simulation Conference DSC’2000. Paris, France, pp. 181–192 (2000)Google Scholar
  4. 4.
    Tideman, M., van der Voort, M.C., van Houten, F.J.A.M.: A new product design method based on virtual reality, gaming and scenarios. Int. J. Interact. Design Manuf. 2, 195–205 (2008)CrossRefGoogle Scholar
  5. 5.
    Kanai, S., Verlinden, J.: Advanced prototyping for human-centered design for information appliances. Int. J. Interact. Design Manuf. 3, 131–134 (2009)CrossRefGoogle Scholar
  6. 6.
    Acal, A.P., Lobera, A.S.: Virtual reality simulation applied to a numerical control milling machine. Int. J. Interact. Design Manuf. 1, 143–154 (2007)CrossRefGoogle Scholar
  7. 7.
    Sghaier, A., Soriano, T.: Using high-level models for modeling industrial machines in a virtual environment. Int. J. Interact. Design Manuf. 2, 99–106 (2008)CrossRefGoogle Scholar
  8. 8.
    Bruno, F., Caruso, F., Li, K., Milite, A., Muzzupappa, M.: Dynamic simulation of virtual prototypes in immersive environment. Int. J. Adv. Manuf. Technol. 43(5–6), 620–630 (2009)CrossRefGoogle Scholar
  9. 9.
    Kanai, S., Miyashita, T., Tada, T.: A multi-disciplinary distributed simulation environment for mechatronic system design enabling hardware-in-the-loop simulation based on HLA. Int. J. Interact. Design Manuf. 1, 175–179 (2007)CrossRefGoogle Scholar
  10. 10.
    Gough, V.E.: Contribution to discussion of papers on research in automobile stability, control and tyre performance. In: Proceedings of Auto Div. Inst. Mech. Eng., pp. 392–394 (1956–1957)Google Scholar
  11. 11.
    Stewart, D.: A Platform with Six Degrees of Freedom. In: Proceedings of Institution of Mechanical Engineers (UK), Vol. 180 (Pt 1, No 15) (1965–1966)Google Scholar
  12. 12.
    Schneider, P., Clauß, C., Enge-Rosenblatt, O., Schneider, A., Bruder, T., Schäfer, C., Voigt, L., Stork, A., Farkas, T.: Functional digital mock-up—more insight to complex multi-physical systems, Bonn (2010)Google Scholar
  13. 13.
    Wojcik, C.K., Hulber, S.F.: The driving simulator—a research tool. ASME Paper 65-WA/HUF-13 (1965)Google Scholar
  14. 14.
    Beinke, R.E., Williams, J.K.: Driving simulator. In: Paper presented at the General Motors Corporation Autootive Safety Seminar (1968)Google Scholar
  15. 15.
    Lincke, W., et al.: Simulation and measurement of driver vehicle handling performance. SAE Paper 730489 (1973)Google Scholar
  16. 16.
    Nordmark, S., et al.: A moving base driving simulator with wide angle vision system. In: 64th Annual Meeting, Transportation Research Board, Washington D.C. (1985)Google Scholar
  17. 17.
    Nordmark, S.: VTI driving simulator—mathematical model of a four-wheeled. Swedish Road and Traffic Institute, VTI No. 267A (1984)Google Scholar
  18. 18.
    Wierwille, W.W.: Driving simulator design for realistic handling. In: Proceedings of the Third International Conference on Vehicle System Dynamics, Swets and Zeitlingerand, Amsterdam (1975)Google Scholar
  19. 19.
    Alicandri, E.: HYSIM: the next best thing to being on the road. Public Roads. Winter 57(3): 19–23 (1994)Google Scholar
  20. 20.
    Drosdol, J., Panik, F.: The Daimler-Benz driving simulator a tool for vehicle development. SAE Paper 850334 (1985)Google Scholar
  21. 21.
    Hahn, S., Käding, W.: The Daimler-Benz driving simulator—presentation of selected experiments. SAE Paper 880058 (1988)Google Scholar
  22. 22.
    Käding, W.: The advanced Daimler-Benz driving simulator. SAE Paper 950175 (1995)Google Scholar
  23. 23.
    Nordmark, S.: The new Trygg Hansa truckdriving simulator: an advanced tool for research and training. In: Swedish Road and Transport Research Institute, VTI Reprint 187 (1992), 6 pages, Proceedings of the International Symposium on Advanced Vehicle Control 1992 (AVEC ’92), Yokohama, Japan (1992)Google Scholar
  24. 24.
    Weir, D.H., Bourne, S.M.: An overview of the DRI driving simulator. SAE Paper 950173 (1995)Google Scholar
  25. 25.
    Stall, D.A., Bourne, S.: The national advanced driving simulator: potential applications to ITS and AHS research. In: Proceedings of the 1996 Annual Meeting of ITS America (1996)Google Scholar
  26. 26.
    Breuer, J.J., Kaeding, W.: Contributions of driving simulators to enhance real world safety. In: Proceedings of the Driving Simulator Conference Asia/Pacific 2006, Tsukuba, Japan (2006)Google Scholar
  27. 27.
    New driving simulator taken into operation in Sindelfingen: Investment in cutting-edge technologies. Accessed 4 Mar 2013
  28. 28.
    Greenberg, J., Artz, B., Cathey, L.: The effect of lateral motion cues during simulated driving. In: Proceeding of the Driving Simulator Conference North America 2003, Dearborn (2003)Google Scholar
  29. 29.
    Huesmann, A., Ehmanns, D., Wisselman, D.: Development of ADAS by means of driving simulation. In: Proceedings of the Driving Simulator Conference Europe 2006, Paris (2006)Google Scholar
  30. 30.
  31. 31.
    Feenstra, P.J., Wentink, M., Roza, Z.C., Bles, W.: Desdemona, an alternative moving base design for driving simulation. In: Proceedings of the Driving Simulator Conference North America: September 2007. Iowa City, Iowa (2007)Google Scholar
  32. 32.
  33. 33.
    National Advanced Driving Simulator Overview. Accessed 4 Mar 2013
  34. 34.
    Ambrož, M., Prebil, I.: i3Drive, a 3D interactive driving simulator. IEEE Comput. Graph. Appl. 30(2), 86–92 (2010)CrossRefGoogle Scholar
  35. 35.
    Cha, M., Yang, J., Han, S.: A Hybrid Driving Simulator with Dynamics-Driven Motion and Data-Driven Motion. SIMULATION (2008)Google Scholar
  36. 36.
    Frenkel, J., Schubert, C., Kunze, G., Jankov, K.: Using Modelica for interactive simulations of technical systems in a virtual reality environment. In: Proceedings 7th Modelica Conference, Como, Italy (2009)Google Scholar
  37. 37. Accessed 4 Mar 2013
  38. 38.
    Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., et al.: The functional Mockup interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference, Dresden, Germany (2011)Google Scholar
  39. 39.
    Gruening, T., Kunze, G., Katterfeld, A.: Simulating the working process of construction machines. In: 3rd International Conference & Exibithion BulkSolids Europe 2010, Glasgow, Scotland (2010)Google Scholar
  40. 40.
    Stork, A., Thole, C.A., Klimenko, S., Nikitin, I., Nikitina, L., Astakhov, Y.: Simulated reality in automotive design. In: International Conference on Cyberworlds, Hannover (2007)Google Scholar
  41. 41.
    Stork, A., Wagner, M., Schneider, P., Bruder, T., Hinnerichs, A.: Functional DMU: co-simulation of mechatronic systems in a virtual environment. In: ASME, editor. Proceedings of the ASME 2011 World Conference on Innovative Virtual Reality, Milan, Italy, pp. 193–198 (2011)Google Scholar
  42. 42.
    IEEE Standard for Distributed Interactive Simulation—Application Protocols. Distributed Interactive Simulation Committee of the IEEE Computer Society. IEEE Std 1278.1a-1998 (Supplement to IEEE Std 1278.1-1995) (1998)Google Scholar
  43. 43.
    DoD High Level Architecture (HLA) for Simulations. Department, U. S. Defense, Under Secretary of Defense for Acquisition and Technology, USD (A &T), memorandum (1996)Google Scholar
  44. 44.
    Schneider, P., Clauß, C., Schneider, A., Stork, A., Bruder, T., Farkas, T.: Towards more insight with functional digital mockup. In: Proceedings of the 4th EASC 2009 European Automotive Simulation Conference, Munich, Germany, pp. 325–336 (2009)Google Scholar
  45. 45.
    Enge-Rosenblatt, O., Clauß, C., Schneider, A., Schneider, P.: Functional digital mock-up and the functional mock-up interface—two complementary approaches for a comprehensive investigation of heterogeneous systems. In: International Modelica Conference, Dresden (2011) Google Scholar
  46. 46.
    SysML. Accessed 4 Mar 2013
  47. 47.
    Fritzson, P., Pop, A., et al.: OpenModelica System Documentation (Version for OpenModelica 1.5) (2010)Google Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  1. 1.DIMEG-Dipartimento di Ingegneria Meccanica Energetica e GestionaleUniversità della CalabriaRendeItaly
  2. 2.Fraunhofer-Institut für Graphische Datenverarbeitung IGDDarmstadtGermany

Personalised recommendations