Advertisement

A bio-inspired grasp optimization algorithm for an anthropomorphic robotic hand

  • F. Cordella
  • L. Zollo
  • E. Guglielmelli
  • B. Siciliano
Original Paper

Abstract

A fundamental requirement for assistive robots is to guarantee a safe and human-like way to perform their tasks. In particular, the ability to realize smooth movements and obtain a stable grasp is of primary importance. In this perspective, this paper aims at studying human grasping and developing a bio-inspired method for power-grip posture prediction and finger trajectory planning for a robotic hand. The developed method is based on neuroscientific assumptions and experimental evidence coming from the observation of the human behavior during power grip. It is based on the minimization of a suitably defined function to identify the optimal grasp configuration and the choice of a logarithmic spiral trajectory for moving the fingers. The behavior of ten different subjects during the grasping action has been analyzed with the CyberGlove motion capture data glove. A common thumb posture has been observed and has been introduced in the grasping algorithm. The algorithm performance has been tested on an anthropomorphic robotic hand by means of simulation trials. The results demonstrate the effectiveness of the approach and pave the way for the implementation on a real robotic hand.

Keywords

Grasping Bio-inspired Preshaping Robotic hand Cyberglove 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santello M., Flanders M., Soechting J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 105–115 (1998)Google Scholar
  2. 2.
    Jeannerod M., Arbib M.A., Rizzolatti G., Sakata H.: Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–320 (1995)CrossRefGoogle Scholar
  3. 3.
    Santello M., Soechting J.: Gradual molding of the hand to object contours. J. Neurophysiol. 79(3), 1307–1320 (1998)Google Scholar
  4. 4.
    Schlesinger G.: Der mechanische aufbau der kunstlichen glieder. Ersatzglieder und Arbeitshilfen. Springer, Berlin (1919)Google Scholar
  5. 5.
    Bullock, I.M., Dollar, A.M.: Classifying human manipulation behavior. In:IEEE International Conference on Rehabilitation Robotics, pp. 532–537 (2011)Google Scholar
  6. 6.
    Lyons, D.M.: A simple set of grasps for a dextrous hand. In:IEEE International Conference on Robotics and Automation, pp. 588–593 (1985)Google Scholar
  7. 7.
    Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.: A comprehensive grasp taxonomy. Robotics, Science and Systems. In:Workshop on Understanding the Human Hand for Advancing Robotic Manipulation (2009)Google Scholar
  8. 8.
    Kamakura N., Matsuo M., Ishii H., Mitsuoboshi F., Miura Y.: Patterns of static prehension in normal hands. Am. J. Occup. Therapy 4(7), 437–445 (1980)CrossRefGoogle Scholar
  9. 9.
    Napier J.R.: The prehensile movements of the human hand. J. Bone Jt. Surg. 38-B(4), 902–913 (1956)Google Scholar
  10. 10.
    Cutkosky M.: On grasp choice, grasp models and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huang, Y.Y., Low, K.H., Lim, H.B.: Initial analysis of EMG signals of hand functions associated to rehabilitation tasks. In:IEEE Conference on Robotics and Biomimetics, pp. 530–535 (2009)Google Scholar
  12. 12.
    Buchholz B., Armstrong T.: A kinematic model of the human hand to evaluate its prehensile capabilities. J. Biomechanics 25(2), 149–162 (1992)CrossRefGoogle Scholar
  13. 13.
    Lee W., Zhang X.: Development and evaluation of an optimization-based model for power-grip posture prediction. J. Biomechanics 38(8), 1591–1597 (2005)CrossRefGoogle Scholar
  14. 14.
    Li Z., Sastry S.: Task oriented optimal grasping by multifingered robot hands. IEEE J. Robot. Autom. 4(1), 389–394 (1987)Google Scholar
  15. 15.
    Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In:IEEE Conference on Robotics and Automation, pp. 348–353 (2000)Google Scholar
  16. 16.
    Zollo L., Roccella S., Guglielmelli E., Carrozza M.C., Dario P.: Biomechatronic design and control of an anthropomorphic artificial hand for prosthetics and robotic applications. IEEE/ASME Trans. Mechatron. 12(4), 418–429 (2007)CrossRefGoogle Scholar
  17. 17.
    Flash T., Hogan N.: The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurophysiol. 5(7), 1688–1703 (1985)Google Scholar
  18. 18.
    Friedman J., Flash T.: Trajectory of the index finger during grasping. Exp. Brain Res. 196(4), 497–509 (2009)CrossRefGoogle Scholar
  19. 19.
    Kamper D.G., Cruz E.G., Siegel M.P.: Stereotypical fingertip trajectories during grasp. J.Neurophysiol. 90(6), 3702–3710 (2003)CrossRefGoogle Scholar
  20. 20.
    Taylor C.L., Schwarz R.J.: The anatomy and mechanics of the human hand. Artif. Limbs 2(2), 22–35 (1955)Google Scholar
  21. 21.
    Guirintano D.J., Hollister A., Buford W., Thompson D., Myers L.: A virtual five-link model of the thumb. Med. Eng. Phys. 17, 297–303 (1995)CrossRefGoogle Scholar
  22. 22.
    Chang, L.Y., Matsuoka, Y.: A kinematic thumb model for the ACT hand. In:2006 IEEE International Conference on Robotics and Automation (2006)Google Scholar
  23. 23.
    Santos V.J., Valero-Cuevas F.J.: Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. IEEE Trans Biomed Eng. 53(2), 155–163 (2006)CrossRefGoogle Scholar
  24. 24.
    Grebenstein, M., Chalon, M., Herzinger, G., Siegwart, R.: A method for hand kinematics designers. In:1st International Conference on Applied Bionics and Biomechanics (2010)Google Scholar
  25. 25.
    Cerveri P., De Momi E., Lopomo N., Baud-Bovy G., Barros R.M.L., Ferrigno G.: Finger kinematic modeling and real-time hand motion estimation. Ann. Biomed. Eng. 35(11), 1989–2002 (2007)CrossRefGoogle Scholar
  26. 26.
    Lin, J., Wu, Y., Huang, T.S.: Modeling the constraints of the human hand motion. In:5th Annual Federated Laboratory Symposium, pp. 121–126 (2001)Google Scholar
  27. 27.
    Park, J., Cheong, J.: Analysis of collective behavior and grasp motion in human hand. In:International Conference on Control, Automation and Systems, 2514–2518, (2010)Google Scholar
  28. 28.
    Stillfried, G., van Der Smagt, P.: Movement model of a human hand based on magnetic resonance imaging (MRI). In:1st International Conference on Applied Bionics and Biomechanics (2010)Google Scholar
  29. 29.
    CyberGlove data glove webpage. http://www.cyberglovesystems.com
  30. 30.
    Cordella, F., Zollo, L., Guglielmelli, E., Siciliano, B.: A bio-inspired strategy for optimal grasp of an anthropomorphic robotic hand. In:Virtual environments and prototyping for human health and safety, Special Track of 9th International Conference IDMME—virtual concept (2010)Google Scholar
  31. 31.
    Lukos J., Ansuini C., Santello M.: Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. J.Neurosci 27(14), 3894–3903 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • F. Cordella
    • 1
  • L. Zollo
    • 2
  • E. Guglielmelli
    • 2
  • B. Siciliano
    • 1
  1. 1.PRISMA Lab, Dipartimento diInformatica e SistemisticaUniversità di Napoli Federico IINaplesItaly
  2. 2.Laboratory of Biomedical Robotics and BiomicrosystemsUniversità Campus Bio-MedicoRomeItaly

Personalised recommendations