Study of an interference fit fastener assembly by finite element modelling, analysis and experiment

  • Manuel ParedesEmail author
  • Naoufel Nefissi
  • Marc Sartor
Original Paper


This paper exploits finite element simulations, analytical approaches and experimental data in a study of interference fit fasteners. The influence of both the friction factor and the interference level on the loss of axial load is investigated. An axisymmetric FE model using Abaqus shows that both parameters greatly influence the results. The study of the axial strain enables the most appropriate positions to be identified for sensors intended to investigate the validity of the finite element analysis results. An analytical study is performed to evaluate the relationship between interference level, friction factor and axial strain all along the screw axis. The axial loss of load and the radial pressure between the screw and the plates are also evaluated analytically.


Interference fit fastener FE analysis Abaqus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petrak G.J., Steward R.P.: Retardation of cracks emanating from fastener holes. Eng. Frac. Mech. 6(2), 275–282 (1974)CrossRefGoogle Scholar
  2. 2.
    Chakherlou T.N., Mirzajanzadeh M., Vogwell J.: Experimental and numerical investigations into the effect of an interference fit on the fatigue life of double shear lap joints. Eng. Fail. Anal. 16, 2066–2080 (2009)CrossRefGoogle Scholar
  3. 3.
    Duprat D., Campassens D., Balzano M., Boudet R.: Fatigue life prediction of interference fit fastener and cold worked holes. Int. J. Fatigue 18(8), 515–521 (1996)CrossRefGoogle Scholar
  4. 4.
    Li G., Backman D., Bellinger N., Shis G.: Numerical modeling of a single aluminium sheet containing an interference fit fastener. Can. Aeronaut. Space J. 51(4), 107–122 (2005)CrossRefGoogle Scholar
  5. 5.
    Fontaine J.F., Siala I.E.: Optimization of the contact surface shape of a shrinkage fit. J. Mater. Process. Technol. 74, 96–103 (1998)CrossRefGoogle Scholar
  6. 6.
    Fontaine J.F., Siala I.E.: Form defect influence on the shrinkage fit characteristics. Eur. Mech. A/Solids 17(1), 107–119 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Yang G.M., Coquille J.F., Fontaine J.C., Lambertin M.: Influence of roughness on characteristics of tight interference fit of a shaft and a hub. Int. J. Solids Struct. 38, 7691–7701 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Yang G.M., Coquille J.F., Fontaine J.C., Lambertin M.: Contact pressure between two rough surfaces of a cylindrical fit. J. Mater. Process. Technol 123, 490–497 (2002)CrossRefGoogle Scholar
  9. 9.
    Ozel A., Temiz S., Aydin M.D., Sen S.: Stress analysis of shrink-fitted joints for various fit forms via finite element method. Mater. Des. 26, 281–289 (2005)CrossRefGoogle Scholar
  10. 10.
    Booker J.D., Truman C.E.: A statistical study of the coefficient of friction under different loading regimes. J. Phys. D Appl. Phys. 41, 1–12 (2008)CrossRefGoogle Scholar
  11. 11.
    Pedersen P.: On shrink fit analysis and design. Comput. Mech. 37, 121–130 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Zhang Y., McClain B., Fang X.D.: Design of interference fits via finite element method. In. J. Mech. Sci. 42, 1835–1850 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Barrot, A., Daidie, A., Ghosn, A.: A FE global approach for dimensioning bolted joints in large slewing bearings: application to an industrial case. In: Proceedings of the Conference on IDMME 2008, Beijing (2008)Google Scholar
  14. 14.
    Zouhair C., Daidie A., Leray D.: Screw behavior in large diameter slewing bearing assemblies: numerical and experimental analyses. Int. J. Interact. Des. Manuf. 1, 21–31 (2007)CrossRefGoogle Scholar
  15. 15.
    Daidie A., Chakhari J., Zqhal A.: Numerical model for bolted T-stubs with two bolt rows. Struct. Eng. Mech. 26(3), 343–361 (2007)Google Scholar
  16. 16.
    Alkatan F., Stephan P., Daidie A., Guillot J.: Equivalent axial stiffness of various components in bolted joints subjected to axial loading. Finite Elem. Anal. Des. 43(8), 589–598 (2007)CrossRefGoogle Scholar
  17. 17.
    Hay, H.D.: Bolt, stud or fastener having an embedded fibre optic bragg grating sensor for sensing tensioning strain. United States Patent (1997)Google Scholar
  18. 18.
    Pran, K., Farsund, O., Wang, G.: Fibre Bragg grating smart bolt monitoring creep in bolted GRP composite. In: 2002 15th Opt. Fib. Sens. Conf. Tech. Dig., OFS, pp. 431–434 (2002)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.INSA, UPS, Mines Albi, ISAE, ICA (Institut Clément Ader)Université de ToulouseToulouseFrance
  2. 2.ESSTT (Ecole Supérieure de Sciences et Techniques de Tunis)TunisTunisia

Personalised recommendations