An uncertainty-based approach to drive product preliminary design

  • Guilain Cabannes
  • Nadège Troussier
  • Thierry Gidel
  • Zohra Cherfi
Original Paper

Abstract

In order to reduce time to market and to master the costs, the design process of industrial companies is more and more structured. It enables collaborative design for experts integration and for improving the decision-making process. Decision making under uncertainties remains an important issue, especially at the beginning of this design process. The product performances are a common reference in collaborative design, and their management involves interactive design. In this paper, a functional analysis under uncertainties approach is proposed, as a means to improve interactive design. It enables to manage the risk of not fulfilling the required performances throughout the design process. This methodology makes it easy to link the data usually handled in engineering design (especially the technical requirements) with those handled for risk assessment (especially failure analysis). Using logical trees, the product functions and the associated chosen technologies are analyzed in terms of risk, taking account of the uncertainties that lead to risk and the potential failure that can arise.

Keywords

Uncertainty Functional analysis Risk Failure Product performance Preliminary design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altshuller, G., Shulyak, L.: 40 Principles: TRIZ Keys to Technical Innovation (Triztools, V. 1). Technical Innovation Center, Inc (1998)Google Scholar
  2. 2.
    Antonsson, E.K., Otto, K.N.: Imprecision in Engineering Design. In: Special Combined Issue of the Transactions of the ASME Commemorating the 50th Anniversary of the Design Engineering Division of the ASME, vol. 117, pp. 25–32 (1995)Google Scholar
  3. 3.
    Aughenbaugh J., Paredis C.: The value of using imprecise probabilities in engineering design. J. Mech. Des. 128, 969 (2006)CrossRefGoogle Scholar
  4. 4.
    Bate, R., Kuhn, D., Wells, C., Armitage, J., Clark, G., et al.: A Systems Engineering Capability Maturity Model, version 1.1. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst (1995)Google Scholar
  5. 5.
    Blanco E., Grebici K., Rieu D.: A unified framework to manage information maturity in design process. Int. J. Prod. Dev. 4(3), 255–279 (2007)CrossRefGoogle Scholar
  6. 6.
    Buede D.M.: The Engineering Design of Systems: Models and Methods (Wiley Series in Systems Engineering and Management), 2nd edn. Wiley, Hoboken (2008) ISBN: 9780470164020Google Scholar
  7. 7.
    Bytheway, C.W.: Fast—an organized stimulus to creativity. In: Proceedings the SAVE Conference, p. 38. International Conference (1975)Google Scholar
  8. 8.
    Cabannes, G., Goh, Y.M., Troussier, N., Gidel, T., McMahon, C.: Taking account of information maturity in assessing product risk. In: 7th International Conference on Integrated Design and Manufacturing in Mechanical Engineering (CDROM). IDMME 2008, Beijing, China. Springer, New York (2008)Google Scholar
  9. 9.
    Coppendale J.: Manage risk in product and process development and avoid unpleasant surprises. Eng. Manag. J. 5, 35–38 (1995)CrossRefGoogle Scholar
  10. 10.
    Dantan J., Hassan A., Etienne A., Siadat A., Martin P.: Information modeling for variation management during the product and manufacturing process design. Int. J. Interact. Des. Manuf. 2(2), 107–118 (2008). doi:10.1007/s12008-008-0040-x CrossRefGoogle Scholar
  11. 11.
    Eversheim W., Roggatz A., Zimmermann H.J., Derichs T.: Information management for concurrent engineering. Eur. J. Oper. Res. 100(2), 253–265 (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Gero, J.S., Kannengiesser, U.: The situated function-behaviour-structure framework. Des. Stud. 25(4) (2004). doi:10.1016/j.destud.2003.10.010
  13. 13.
    Project Management Institute (ed.).: A Guide to the Project Management Body of Knowledge PMBOK Guide, chap. 11, pp. 127–151. Project Management Institute, Four Campus Boulevard, Newtown Square, PA 19073-3299 USA (2000)Google Scholar
  14. 14.
    Kleinmeyer, J.S., Cabannes, G., Lafon, P., Troussier, N., Roucoules L., Thierry, G.: Specific product modelling approach for alternatives identification, optimisation and robustness analysis. International Conference on Engineering Design, ICED07, Paris, France (2007)Google Scholar
  15. 15.
    Kumamoto H.: Probabilistic Risk Assessment and Management for Engineers and Scientists. Wiley, New York (1996)Google Scholar
  16. 16.
    Legardeur J., Boujut J., Tiger H.: Lessons learned from an empirical study of the early design phases of an unfulfilled innovation. Res. Eng. Des. 21(4), 249–262 (2010). doi:10.1007/s00163-010-0090-5 CrossRefGoogle Scholar
  17. 17.
    Maimon Z.O., Horowitz R.: Sufficient conditions for inventive solutions. Syst. Man Cybern. C: Appl. Rev. 29, 349–361 (1999)CrossRefGoogle Scholar
  18. 18.
    Noguchi H., Shimizu H.: Reliability problem prevention method for automotive components-development of gd’3’ activity and drbfm method for stimulating creativity and visualizing problems. Trans. Soc. Autom. Eng. Jpn. 36(4), 163–168 (2005)Google Scholar
  19. 19.
    Pahl D.G., Beitz W.: Engineering Design—A Systematic Approach, 3rd edn. Springer, Berlin (1996)Google Scholar
  20. 20.
    Paredes M.: Methodology to build an assistance tool dedicated to preliminary design: application to compression springs. Int. J. Interact. Des. Manuf. 3(4), 265–272 (2009). doi:10.1007/s12008-009-0079-3 CrossRefGoogle Scholar
  21. 21.
    Parsons, S., Hunter, A.: A review of uncertainty handling formalisms, pp. 8–37. (1998). doi:10.1007/3-540-49426-X_2
  22. 22.
    Prasad B.: Review of QFD and related deployment techniques. J. Manuf. Syst. 17(3), 221–234 (1998). doi:10.1016/S0278-6125(98)80063-0 CrossRefGoogle Scholar
  23. 23.
    Rabeau S., Dépincé P., Bennis F.: Collaborative optimization of complex systems: a multidisciplinary approach. Int. J. Interact. Des. Manuf. 1(4), 209–218 (2007). doi:10.1007/s12008-007-0025-1 CrossRefGoogle Scholar
  24. 24.
    Sebastian P., Ledoux Y.: Decision support systems in preliminary design. Int. J. Interact. Des. Manuf. 3(4), 223–226 (2009). doi:10.1007/s12008-009-0077-5 CrossRefGoogle Scholar
  25. 25.
    Stamatelatos, M., Apostolakis, G., Dezfuli, H., Everline, C., Guarro, S., Moieni, P., Mosleh, A., Paulos, T., Youngblood, R.: Probabilistic Risk Asessment Procedures Guide for NASA Managers and Practitioners, Version 1.1 edn. NASA, Washington (2002)Google Scholar
  26. 26.
    Suh N.P.: Axiomatic Design: Advances and Applications (The Oxford Series on Advanced Manufacturing). Oxford University Press, Oxford (2001)Google Scholar
  27. 27.
    Suss, S., Grebici, K., Thomson, V.: The Effect of Uncertainty on Span Time and Effort within a Complex Design Process. Modelling for Business Improvement, p. 77 (2010)Google Scholar
  28. 28.
    Taguchi G., Chowdhury S., Taguchi S.: Robust Engineering. McGraw-Hill, New York (2000)Google Scholar
  29. 29.
    Thunnissen, D.P.: Propagating and mitigating uncertainty in the design of complex multidisciplinary systems. Ph.D. thesis, California Institute of Technology (2004)Google Scholar
  30. 30.
    Ullman, D.G.: The mechanical design process. In: McGraw-Hill Series in Mechanical Engineering, 3rd edn. McGraw-Hill Higher Education, New York (2003)Google Scholar
  31. 31.
    Vernat Y., Nadeau J.P., Sébastian P.: Formalization and qualification of models adapted to preliminary design. Int. J. Interact. Des. Manuf. 4(1), 11–24 (2010). doi:10.1007/s12008-009-0081-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Guilain Cabannes
    • 1
  • Nadège Troussier
    • 1
  • Thierry Gidel
    • 2
  • Zohra Cherfi
    • 1
  1. 1.Université de Technologie de Compiègne, CNRS UMR 6253 RobervalCompiègne CedexFrance
  2. 2.Université de Technologie de Compiègne, EA2223 CostechCompiègne CedexFrance

Personalised recommendations