Optimization of product configuration assisted by fuzzy agents

Original Paper


Configurable product design is a collaborative and distributed process. Supporting collaborative and distributed design for configuration with computer technology is a strategy to enhance the ability of actors to interact with each other and with computational resources. Therefore, from process and product point of views, configurable product design can be assisted by multiagent system. This paper proposes fuzzy agents to assist collaborative and distributed design for optimal configuration. The motivation of this research is that more effective design decisions can be made by fuzzy agents when fuzzy design information is considered in a fuzzy interaction based process and heterogeneous, dynamic adaptive and fuzzy evolving systems. A fuzzy optimal product configuration mathematical formulation is proposed. The modelling and the implementation of an agent-based system complies with this formal basis. In the proposed agent-based system, there are four communities of agents: specification community, function community, physical solution community and production constraint community. During design process, the interactions between agents permit to emerge, first, the consensual physical solutions to configure a product, and secondly, the optimal configuration. The proposed optimization algorithm is inspired from adaptive and distributed routing algorithms used in computer networks. The algorithm allows optimization of product configuration by exchange of the optimal solution agent network information between the neighbour solution agents. A case study is presented to demonstrate the potential of this approach.


Distributed design process Design for configuration Multi agent systems Fuzzy agents Optimal product configuration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tiihonen J., Soininen T., Männistö T., Sulonen R. (1996) State of 10 cases in the Finnish industry. In: Tomiyama T., Mäntylä M., Finger S. (eds) Knowledge Intensive CAD. Chapman & Hall, London, pp 95–114Google Scholar
  2. 2.
    Soininen T., Tiihonen J., Männistö T., Sulonen R. (1998) Towards a general ontology of configuration. Artif. Intell. Eng. Des. Anal. Manuf. 12(4): 357–372Google Scholar
  3. 3.
    Sabin D., Weigel R. (1998) Configuration frameworks—a survey. IEEE Intell. Syst. 13(4): 32–85CrossRefGoogle Scholar
  4. 4.
    Männistö, T., Soininen, T., Sulonen, R.: Modeling Configurable products and software product families. In: Proceedings of IJCAI’01 Workshop on Configuration, Seattle (2001)Google Scholar
  5. 5.
    Snavely G.L., Papalambros P.Y. (1993) Abstraction as a configuration design methodology. Adv. Des. Autom. 65(1): 297–305Google Scholar
  6. 6.
    Siddique Z., Rosen D. (2001) On combinatorial design spaces for the configuration design of product families. Artif. Intell. Eng. Des. Anal. Manuf. 15(2): 91–108MATHGoogle Scholar
  7. 7.
    Deciu E.R., Ostrosi E., Ferney M., Gheorghe M. (2005) Configurable product design using multiple fuzzy models. J. Eng. Des. 16(2–3): 209–235CrossRefGoogle Scholar
  8. 8.
    Ostrosi, E., Fougères, A.-J., Ferney, M., Klein, D.: Distributed fuzzy product configuration using a multiagent approach. In: Proceedings of 13th IFAC Symposium on Information Control Problems in Manufacturing, INCOM’09. Moscow, 3–5 June 2009Google Scholar
  9. 9.
    Garro O., Salau I., Martin P. (1995) Distributed design theory and methodology. Int. J. Concurrent Eng. Res. Appl. 3(1): 43–54CrossRefGoogle Scholar
  10. 10.
    Brissaud D., Garro O. (1996) An approach to concurrent engineering using distributed design methodology. Int. J. Concurrent Eng. Res. Appl. 4(3): 303–311CrossRefGoogle Scholar
  11. 11.
    Movahed-Khah R., Ostrosi E., Garro O. (2010) Analysis of interaction dynamics in collaborative and distributed design process. Int. J. Comput. Indus. 61(2): 2–14CrossRefGoogle Scholar
  12. 12.
    Horváth I. (2004) A treatise on order in engineering design research. Res. Eng. Des. 15(3): 155–181CrossRefGoogle Scholar
  13. 13.
    Weiss G. (1999) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT Press, CambridgeGoogle Scholar
  14. 14.
    Cutkosky M., Englemore R. (1993) PACT: an experiment in integrated concurrent engineering systems. IEEE Comput. 26(1): 28–37Google Scholar
  15. 15.
    Parunak H., Sauter J., Fleisher M. (1999) The RAPPID Project: symbiosis between industrial requirements and MAS research. Auton. Agents Multiagent Syst. 2: 111–140CrossRefGoogle Scholar
  16. 16.
    Sun J., Zhang Y., Nee A. (2001) A distributed multiagent environment for product design and manufacturing planning. Int. J. Prod. Res. 39(4): 625–645CrossRefGoogle Scholar
  17. 17.
    Marik V., McFarlane D. (2005) Industrial adoption of agent-based technologies. IEEE Intell. Syst. 20(1): 27–35CrossRefGoogle Scholar
  18. 18.
    Monostori L., Vancza J., Kumara S.R.T. (2006) Agent-based systems for manufacturing. Ann. CIRP 55(2): 697–720CrossRefGoogle Scholar
  19. 19.
    Shen W., Hao Q., Wang S., Li Y., Ghenniwa H. (2007) An agent-based service-oriented integration architecture for collaborative intelligent manufacturing. Robot. Comput. Integr. Manuf. 23: 315–325CrossRefGoogle Scholar
  20. 20.
    Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art survey. Eng. Appl. Artif. Intell. (2008). doi: 10.1016/j.engappai.2008.09.005
  21. 21.
    Ferber J. (1998) Multiagent Systems: Towards a Collective Intelligence. Addison-Wesley, ReadingGoogle Scholar
  22. 22.
    Jennings N.R. (2000) On agent-based software engineering. Artif. Intell. 117: 277–296MATHCrossRefGoogle Scholar
  23. 23.
    Wooldridge M. (2002) An Introduction to Multiagent Systems. Wiley, New YorkGoogle Scholar
  24. 24.
    Sloman A. (1997) What sort of architecture is required for a human-like agent?. In: Wooldridge M., Rao A. (eds) Foundations of Rational Agency. Kluwer, DordrechtGoogle Scholar
  25. 25.
    van Aart C. (2005) Organizational principles for multiagent architectures. Birkhauser, BaselGoogle Scholar
  26. 26.
    Ming Chao K., Norman P., Anane R., James A. (2002) An agent-based approach to engineering design. Comput. Indus. 48(1): 17–27CrossRefGoogle Scholar
  27. 27.
    Mittal, S., Frayman, F.: Towards a generic model of configuration tasks. In: Proceedings of the International Joint Conference Artificial Intelligence (IJCAI-89), pp. 1395–1401 (1989)Google Scholar
  28. 28.
    Brown, D.C.: Defining configuring. In: Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol. 12. Cambridge University Press, Cambridge, pp. 301–305 (1998)Google Scholar
  29. 29.
    Günter, A., Kühn, C.: Knowledge-based systems—survey and future directions. In: Puppe, F. (ed.) Proceedings of XPS-99: Knowledge-Based Systems—Survey and Future Directions. Fifth Biannual German Conference on Knowledge-Based Systems. Lecture Notes in Computer Science, Springer, Würzburg, Germany (1999)Google Scholar
  30. 30.
    Veron, M., Fargier, H., Aldanondo, M.: From CSP to configuration problems. In: Proceedings of the Workshop AAAI’99 on Configuration, Orlando (1999)Google Scholar
  31. 31.
    Zadeh L.A. (1965) Fuzzy sets. Inform. Control 8: 338–353MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Bellman R.E., Zadeh L.A. (1970) Decision-making in a fuzzy environment. Manage. Sci. 17: 141–164CrossRefMathSciNetGoogle Scholar
  33. 33.
    Antonsson E.K., Otto K.N. (1995) Imprecision in engineering design. ASME J. Mech. Des. 117: 25–32CrossRefGoogle Scholar
  34. 34.
    Zimmermann H.J. (1996) Fuzzy set theory and its applications. 3rd edn. Kluwer, BostonMATHGoogle Scholar
  35. 35.
    Jiao J., Tseng M.M. (2004) Customizability analysis in design for mass customization. Comput. Aided Des. 36(8): 745–757CrossRefGoogle Scholar
  36. 36.
    Ostrosi, E., Tie-Bie, S., Deciu, E.R., Ferney, M.: An integrated approach for optimal product configuration using p-median model. In: Proceedings of IDMME-Virtual Concept 2008. Beijing, China, 8–10 October 2008Google Scholar
  37. 37.
    Fougères, A.-J.: Agents to cooperate in distributed design. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetic, pp. 2629–2634. The Hague, Netherlands (2004)Google Scholar
  38. 38.
    Nahm Y.E., Ishikawa H. (2005) A hybrid multiagent system architecture for enterprise integration using computer networks. Robot. Comput. Integr. Manuf. 21(3): 217–234CrossRefGoogle Scholar
  39. 39.
    Wooldridge M. (1997) Agent-based software engineering. IEE Proc. Softw. Eng. 144(1): 26–37CrossRefGoogle Scholar
  40. 40.
    Rasmussen J. (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. 13: 257–266Google Scholar
  41. 41.
    Fougères, A.-J.: Model of cognitive agents to simulate complex information systems. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetic. Hammamet, 6–9 October 2002Google Scholar
  42. 42.
    Bauer B., Odell J. (2005) UML 2.0 and agents: how to build agent-based systems with the new UML standard. Eng. Appl. Artif. Intell. 18(2): 141–157CrossRefGoogle Scholar
  43. 43.
    Cernuzzi L., Cossentino M., Zambonelli F. (2005) Process models for agent-based development. Eng. Appl. Artif. Intell. 18(2): 205–222CrossRefGoogle Scholar
  44. 44.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second Edition, Section 24.1: The Bellman-Ford Algorithm, MIT Press, Cambridge, pp. 588–592 (2001)Google Scholar
  45. 45.
    Ghasem-Aghaee, N., Ören, T.I.: Towards fuzzy agents with dynamic personality for human behavior simulation. In: Proceedings of SCSC 2003, pp. 3–10. Montreal, Canada, 20–24 July 2003Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratoire de Recherche Mécatronique 3MUniversité de Technologie de Belfort-MontbéliardBelfortFrance

Personalised recommendations