Advertisement

Using constraint satisfaction for designing mechanical systems

  • Pierre-Alain YvarsEmail author
Original Paper

Abstract

In this paper, we are studying the application of techniques to solve constraint satisfaction problems (CSP) for designing mechanical systems. After situating CSPs within the array of search and combinatorial optimisation techniques, we propose to model the design space in the form of a state graph and demonstrate the suitability of the constraint approach to solve the model. The implementation of a CSP is illustrated by an example of the dimensioning of a cluster of gear wheels in the mechanical engineering industry. Finally, we draw attention to the complementarity of CSPs with other search and solution optimisation techniques and suggest a few integration possibilities.

Keywords

Constraint CSP Design space Problem solving Product modelling Routine design Mechanical engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldanondo, M., Hadj-Hamou, K., Lamothe, J.: Product generic modelling for configuration : Requirement analysis and modelling elements, KOGAN PAGE, pp. 50–70, ISBN 1-9039-9643-0 (2003)Google Scholar
  2. 2.
    Barricelli, N., et al.: Esempi numerici di processi di evoluzione. Methodos: 45–68 (1954)Google Scholar
  3. 3.
    Bernard, A.: ‘Modèles et approches pour la conception et la production intégrées’, Revue APII - JESA, Vol. 34 - 2-3/2000, pp. 163–194, No. ISBN: 2-7462-01445 (2000)Google Scholar
  4. 4.
    Chandrasekaran, B.: Design Problem: a task analysis, AI Magazine, Vol.: Winter (1990)Google Scholar
  5. 5.
    Clerc, M.: L’optimisation par essaims particulaires. Versions paramétriques et adaptatives, Hermés Science (2005)Google Scholar
  6. 6.
    Cvijovic D., Klinowski J.: Taboo search—an approach to the multiple minima problem. Science 267, 664–666 (1995)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Daniel, M., Lucas, M.: Towards declarative geometric modeling in mechanics. In: Chedmail, P., Bocquet, J.C., Dornfeld, D (eds.) IDMME’96—Integrated Design andManufacturing, pp. 427–436. Kluwer, Dordrecht (1997)Google Scholar
  8. 8.
    Davis, E.: Constraint propagation with interval labels. Artif. Intell. 24.3 (1987)Google Scholar
  9. 9.
    Delobel F.: Résolution de systèmes de contraintes réelles non linéaires. Ph.D. Thesis Computer Science, Université de Nice Sophia Antipolis, France (2000)Google Scholar
  10. 10.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy (1992)Google Scholar
  11. 11.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge. ISBN 0-262-04219-3 (2004)Google Scholar
  12. 12.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems, Chichester. Wiley, England. ISBN 978-0-471-97150-4 (1997)Google Scholar
  13. 13.
    Falting, B.: Arc consistency for continuous variables. Artif. Intell. 65(2) (1994)Google Scholar
  14. 14.
    Fischer, X., Sebastian, P., Zimmer, L.: A constraint based approach for design support system. In: Gero, J. (ed.) Design Computing and Cognition 2004 (DCC 04), Boston (2004)Google Scholar
  15. 15.
    Ilog. IlogCP, Reference Manual, Ilog, Gentilly, France (2006)Google Scholar
  16. 16.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC4 (2), 100–107 (1968)Google Scholar
  17. 17.
    Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kota, S., Ward, A.C.: Functions, structures and constraints in conceptual design. Design Laboratory, Department of Mechanical Engineering and Applied Mechanics University of Michigan (1991)Google Scholar
  19. 19.
    Lauriere, J.L.: Un langage et un programme pour résoudre et énoncer des problèmes combinatoires: ALICE. Ph.D. Thesis, Paris 6 University, France (1976)Google Scholar
  20. 20.
    Lhomme, O.: Consistency techniques for numeric CSPs. In: 13th International Conference on Artif. Intelligence, pp. 232–238, Chambéry, France (1993)Google Scholar
  21. 21.
    Lhomme, O., Rueher, M.: Application des techniques CSP au raisonnement sur les intervalles, Revue d’intelligence artificielle, Dunod, vol. 11:3, pp. 283:311 (1997)Google Scholar
  22. 22.
    Mackworth A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1997)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Montanari U.: Networks of constraints: fundamental properties and applications to pictureprocessing. Inf. Sci. 7, 95–132 (1974)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Moore R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  25. 25.
    Purvis, L.: A CBR integration from inception to productization. In: Proceedings of AAAI’98 Conference (1998)Google Scholar
  26. 26.
    Serré, P.: Cohérence de la spécification d’un objet de l’espace euclidien à n dimensions. Ph.D. Thesis, Ecole Centrale, Paris, France (2000)Google Scholar
  27. 27.
    Sveda, M.: Industrial measurement application development using case-based reasoning. In: Proc of Second International Conference on System (ICONS’07). IEEE Computer Society (2007)Google Scholar
  28. 28.
    Titus, N., Ramani, K.: Design space exploration using constraint satisfaction. In: Proeedings of IJCAI’05 (2005)Google Scholar
  29. 29.
    Vargas, C., Saucier, A., Albert, P., Yvars, P.A.: Knowledge modelisation and constraint propagation in a computer aided design system. In: Workshop notes Constraint Processing in CAD of the Third International Conference on Artif. Intelligence in Design, Lausanne, Switzerland, August (1994)Google Scholar
  30. 30.
    Wagner, M.R.: Understanding the ICAD System, edn. ICAD Inc (1990)Google Scholar
  31. 31.
    Waltz, D.: Generating Semantic Descriptions from Drawings of Scenes with Shadows. MIT, Massachusetts (1972)Google Scholar
  32. 32.
    Yannou, B., Harmel, G.: Use of constraint programming for design. In: ElMaraghy, H., ElMaraghy, W. (eds.) Advances in Design, Chap. 12. Springer, Heidelberg (2005)Google Scholar
  33. 33.
    Yvars, P.A.: Contribution à la représentation des connaissances en ingénierie intégrée de produits et de systèmes de production, Mémoire d’habilitation à diriger les recherches, INPG, Grenoble, January (2001)Google Scholar
  34. 34.
    Yvars, P.A.: Eléments pour une ingénierie supervisée par les contraintes. In: Proceedings Congrés Français de Mécanique CFM’05, UTT, Troyes, France (2005)Google Scholar
  35. 35.
    Yvars, P.A.: A three level architecture for knowledge representation in mechanical engineering. In: Proceedings of 6th International Conference on Integrated Design and Manufacturing in Mechanical Engineering, IDMME’06, Grenoble, France (2006)Google Scholar

Copyright information

© Springer Verlag France 2008

Authors and Affiliations

  1. 1.Institut Supérieur de Mécanique de ParisLISMMASaint Ouen CedexFrance

Personalised recommendations