Clinical Orthopaedics and Related Research®

, Volume 475, Issue 10, pp 2412–2426 | Cite as

What Factors Influence the Biomechanical Properties of Allograft Tissue for ACL Reconstruction? A Systematic Review

  • Drew A. Lansdown
  • Andrew J. Riff
  • Molly Meadows
  • Adam B. Yanke
  • Bernard R. BachJr
Symposium: Improving Care for Patients With ACL Injuries: A Team Approach

Abstract

Background

Allograft tissue is used in 22% to 42% of anterior cruciate ligament (ACL) reconstructions. Clinical outcomes have been inconsistent with allograft tissue, with some series reporting no differences in outcomes and others reporting increased risk of failure. There are numerous variations in processing and preparation that may influence the eventual performance of allograft tissue in ACL reconstruction. We sought to perform a systematic review to summarize the factors that affect the biomechanical properties of allograft tissue for use in ACL reconstruction. Many factors might impact the biomechanical properties of allograft tissue, and these should be understood when considering using allograft tissue or when reporting outcomes from allograft reconstruction.

Questions/purposes

What factors affect the biomechanical properties of allograft tissue used for ACL reconstruction?

Methods

We performed a systematic review to identify studies on factors that influence the biomechanical properties of allograft tissue through PubMed and SCOPUS databases. We included cadaveric and animal studies that reported on results of biomechanical testing, whereas studies on fixation, histologic evaluation, and clinical outcomes were excluded. There were 319 unique publications identified through the search with 48 identified as relevant to answering the study question. For each study, we recorded the type of tissue tested, parameters investigated, and the effects on biomechanical behavior, including load to failure and stiffness. Primary factors identified to influence allograft tissue properties were graft tissue type, sterilization methods (irradiation and chemical processing), graft preparation, donor parameters, and biologic adjuncts.

Results

Load to failure and graft stiffness varied across different tissue types, with nonlooped tibialis grafts exhibiting the lowest values. Studies on low-dose irradiation showed variable effects, whereas high-dose irradiation consistently produced decreased load to failure and stiffness values. Various chemical sterilization measures were also associated with negative effects on biomechanical properties. Prolonged freezing decreased load to failure, ultimate stress, and ultimate strain. Up to eight freeze-thaw cycles did not lead to differences in biomechanical properties of cadaveric grafts. Regional differences were noted in patellar tendon grafts, with the central third showing the highest load to failure and stiffness. Graft diameter strongly contributed to load-to-failure measurements. Age older than 40 years, and especially older than 65 years, negatively impacted biomechanical properties, whereas gender had minimal effect on the properties of allograft tissue. Biologic adjuncts show potential for improving in vivo properties of allograft tissue.

Conclusions

Future clinical studies on allograft ACL reconstruction should investigate in vivo graft performance with standardized allograft processing and preparation methods that limit the negative effects on the biomechanical properties of tissue. Additionally, biologic adjuncts may improve the biomechanical properties of allograft tissue, although future preclinical and clinical studies are necessary to clarify the role of these treatments.

Clinical Relevance

Based on the findings of this systematic review that emphasize biomechanical properties of ACL allografts, surgeons should favor the use of central third patellar tendon or looped soft tissue grafts, maximize graft cross-sectional area, and favor grafts from donors younger than 40 years of age while avoiding grafts subjected to radiation doses > 20 kGy, chemical processing, or greater than eight freeze-thaw cycles.

References

  1. 1.
    Almqvist KF, Jan H, Vercruysse C, Verbeeck R, Verdonk R. The tibialis tendon as a valuable anterior cruciate ligament allograft substitute: biomechanical properties. Knee Surg Sports Traumatol Arthrosc. 2007;15:1326–1330.CrossRefPubMedGoogle Scholar
  2. 2.
    American Academy of Orthopaedic Surgeons. Allografts for ACL Reconstruction Survey Report. Rosemont, IL, USA: American Orthopaedic Society for Sports Medicine; 2013.Google Scholar
  3. 3.
    Bach BR, Aadalen KJ, Dennis MG, Carreira DS, Bojchuk J, Hayden JK, Bush-Joseph CA. Primary anterior cruciate ligament reconstruction using fresh-frozen, nonirradiated patellar tendon allograft minimum 2-year follow-up. Am J Sports Med. 2005;33:284–292.CrossRefPubMedGoogle Scholar
  4. 4.
    Baker TF, Ronholdt CJ, Bogdansky S. Validating a low dose gamma irradiation process for sterilizing allografts using ISO 11137 method 2B. Cell Tissue Bank. 2005;6:271–275.CrossRefPubMedGoogle Scholar
  5. 5.
    Baldini T, Caperton K, Hawkins M, McCarty E. Effect of a novel sterilization method on biomechanical properties of soft tissue allografts. Knee Surg Sports Traumatol Arthrosc. 2016;24:3971–3975.CrossRefPubMedGoogle Scholar
  6. 6.
    Balsly CR, Cotter AT, Williams LA, Gaskins BD, Moore MA, Wolfinbarger L Jr. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank. 2008;9:289–298.CrossRefPubMedGoogle Scholar
  7. 7.
    Bhatia S, Bell R, Frank RM, Rodeo SA, Bach BR Jr, Cole BJ, Chubinskaya S, Wang VM, Verma NN. Bony incorporation of soft tissue anterior cruciate ligament grafts in an animal model: autograft versus allograft with low-dose gamma irradiation. Am J Sports Med. 2012;40:1789–1798.CrossRefPubMedGoogle Scholar
  8. 8.
    Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC. The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med. 1994;22:328–333.CrossRefPubMedGoogle Scholar
  9. 9.
    Boniello MR, Schwingler PM, Bonner JM, Robinson SP, Cotter A, Bonner KF. Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy. 2015;31:1084–1090.CrossRefPubMedGoogle Scholar
  10. 10.
    Budny J, Fox J, Rauh M, Fineberg M. Emerging trends in anterior cruciate ligament reconstruction. J Knee Surg. 2017;30:63–69.CrossRefPubMedGoogle Scholar
  11. 11.
    Carey JL, Dunn WR, Dahm DL, Zeger SL, Spindler KP. A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Joint Surg Am. 2009;91:2242–2250.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Centers for Disease Control and Prevention (CDC). Update: unexplained deaths following knee surgery–Minnesota, 2001. MMWR Morb Mortal Wkly Rep. 2001;50:1080.Google Scholar
  13. 13.
    Centers for Disease Control and Prevention (CDC). Update: allograft-associated bacterial infections–United States, 2002. MMWR Morbid Mortal Wkly Rep. 2002;51:207–210.Google Scholar
  14. 14.
    Chahal J, Lee A, Heard W, Bach BR. A retrospective review of anterior cruciate ligament reconstruction using patellar tendon 25 years of experience. Orthop J Sports Med. 2013;1:2325967113501789.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chan DB, Temple HT, Latta LL, Mahure S, Dennis J, Kaplan LD. A biomechanical comparison of fan-folded, single-looped fascia lata with other graft tissues as a suitable substitute for anterior cruciate ligament reconstruction. Arthroscopy. 2010;26:1641–1647.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen J, Yang L, Guo L, Duan X. Sodium hyaluronate as a drug-release system for VEGF 165 improves graft revascularization in anterior cruciate ligament reconstruction in a rabbit model. Exp Ther Med. 2012;4:430–434.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen L, Wu Y, Yu J, Jiao Z, Ao Y, Yu C, Wang J, Cui G. Effect of repeated freezing-thawing on the Achilles tendon of rabbits. Knee Surg Sports Traumatol Arthrosc. 2011;19:1028–1034.CrossRefPubMedGoogle Scholar
  18. 18.
    Clark L, Howard C, Bisson LJ. Energy absorbed by longitudinally splitting a tibialis anterior allograft: implications for double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 2010;26:1233–1236.CrossRefPubMedGoogle Scholar
  19. 19.
    Curran AR, Adams DJ, Gill JL, Steiner ME, Scheller AD. The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med. 2004;32:1131–1135.CrossRefPubMedGoogle Scholar
  20. 20.
    Dai C, Wang F, Wang X, Wang R, Wang S, Tang S. Arthroscopic single-bundle anterior cruciate ligament reconstruction with six-strand hamstring tendon allograft versus bone-patellar tendon-bone allograft. Knee Surg Sports Traumatol Arthrosc. 2016;24:2915–2922.CrossRefPubMedGoogle Scholar
  21. 21.
    Delcroix GJ, Kaimrajh DN, Baria D, Cooper S, Reiner T, Latta L, D’Ippolito G, Schiller PC, Temple HT. Histologic, biomechanical, and biological evaluation of fan-folded iliotibial band allografts for anterior cruciate ligament reconstruction. Arthroscopy. 2013;29:756–765.CrossRefPubMedGoogle Scholar
  22. 22.
    Di Matteo B, Loibl M, Andriolo L, Filardo G, Zellner J, Koch M, Angele P. Biologic agents for anterior cruciate ligament healing: a systematic review. World J Orthop. 2016;7:592.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dong S, Huangfu X, Xie G, Zhang Y, Shen P, Li X, Qi J, Zhao J. Decellularized versus fresh-frozen allografts in anterior cruciate ligament reconstruction: an in vitro study in a rabbit model. Am J Sports Med. 2015;43:1924–1934.CrossRefPubMedGoogle Scholar
  24. 24.
    Drez DJ Jr, DeLee J, Holden JP, Arnoczky S, Noyes FR, Roberts TS. Anterior cruciate ligament reconstruction using bone-patellar tendon-bone allografts. A biological and biomechanical evaluation in goats. Am J Sports Med. 1991;19:256–263.Google Scholar
  25. 25.
    Fideler BM, Vangsness CT Jr, Lu B, Orlando C, Moore T. Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med. 1995;23:643–646.CrossRefPubMedGoogle Scholar
  26. 26.
    Foster TE, Wolfe BL, Ryan S, Silvestri L, Kaye EK. Does the graft source really matter in the outcome of patients undergoing anterior cruciate ligament reconstruction? An evaluation of autograft versus allograft reconstruction results: a systematic review. Am J Sports Med. 2010;38:189–199.CrossRefPubMedGoogle Scholar
  27. 27.
    Ghodadra NS, Mall NA, Grumet R, Sherman SL, Kirk S, Provencher MT, Bach BR. Interval arthrometric comparison of anterior cruciate ligament reconstruction using bone–patellar tendon–bone autograft versus allograft: do grafts attenuate within the first year postoperatively? Am J Sports Med. 2012;40:1347–1354.CrossRefPubMedGoogle Scholar
  28. 28.
    Giannini S, Buda R, Di Caprio F, Agati P, Bigi A, De Pasquale V, Ruggeri A. Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int Orthop. 2008;32:145–151.CrossRefPubMedGoogle Scholar
  29. 29.
    Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR. Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res. 1991;9:209–218.CrossRefPubMedGoogle Scholar
  30. 30.
    Giedraitis A, Arnoczky SP, Bedi A. Allografts in soft tissue reconstructive procedures: important considerations. Sports Health. 2014;6:256–264.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Greaves LL, Hecker AT, Brown CH. The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Am J Sports Med. 2008;36:1358–1366.CrossRefPubMedGoogle Scholar
  32. 32.
    Gut G, Marowska J, Jastrzebska A, Olender E, Kaminski A. Structural mechanical properties of radiation-sterilized human bone-tendon-bone grafts preserved by different methods. Cell Tissue Bank. 2016;17:277–287.CrossRefPubMedGoogle Scholar
  33. 33.
    Haut Donahue TL, Howell SM, Hull ML, Gregersen C. A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy. 2002;18:589–597.CrossRefPubMedGoogle Scholar
  34. 34.
    Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S. Effect of electron beam irradiation on biomechanical properties of patellar tendon allografts in anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38:1134–1140.CrossRefPubMedGoogle Scholar
  35. 35.
    Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S. Fractionation of high-dose electron beam irradiation of BPTB grafts provides significantly improved viscoelastic and structural properties compared to standard gamma irradiation. Knee Surg Sports Traumatol Arthrosc. 2011;19:1955–1961.CrossRefPubMedGoogle Scholar
  36. 36.
    Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S. High-dose electron beam sterilization of soft-tissue grafts maintains significantly improved biomechanical properties compared to standard gamma treatment. Cell Tissue Bank. 2015;16:219–226.CrossRefPubMedGoogle Scholar
  37. 37.
    Jones DB, Huddleston PM, Zobitz ME, Stuart MJ. Mechanical properties of patellar tendon allografts subjected to chemical sterilization. Arthroscopy. 2007;23:400–404.CrossRefPubMedGoogle Scholar
  38. 38.
    Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo SL. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J Orthop Res. 2011;29:1193–1198.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kaeding CC, Aros B, Pedroza A, Pifel E, Amendola A, Andrish JT, Dunn WR, Marx RG, McCarty EC, Parker RD. Allograft versus autograft anterior cruciate ligament reconstruction predictors of failure from a MOON prospective longitudinal cohort. Sports Health. 2011;3:73–81.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim S-J, Bae J-H, Lim H-C. Comparison of Achilles and tibialis anterior tendon allografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2014;22:135–141.CrossRefPubMedGoogle Scholar
  41. 41.
    Lind M, Menhert F, Pedersen AB. Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med. 2012;40:1551–1557.CrossRefPubMedGoogle Scholar
  42. 42.
    Mabe I, Hunter S. Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison. Cell Tissue Bank. 2014;15:523–529.CrossRefPubMedGoogle Scholar
  43. 43.
    Maletis GB, Chen J, Inacio MC, Funahashi TT. Age-related risk factors for revision anterior cruciate ligament reconstruction: a cohort study of 21,304 patients from the Kaiser Permanente anterior cruciate ligament registry. Am J Sports Med. 2016;44:331–336.CrossRefPubMedGoogle Scholar
  44. 44.
    Mariscalco MW, Magnussen RA, Mehta D, Hewett TE, Flanigan DC, Kaeding CC. Autograft versus nonirradiated allograft tissue for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 2014;42:492–499.CrossRefPubMedGoogle Scholar
  45. 45.
    McGilvray KC, Santoni BG, Turner AS, Bogdansky S, Wheeler DL, Puttlitz CM. Effects of (60)Co gamma radiation dose on initial structural biomechanical properties of ovine bone-patellar tendon-bone allografts. Cell Tissue Bank. 2011;12:89–98.CrossRefPubMedGoogle Scholar
  46. 46.
    Nasert MA, Barber FA. Biomechanical strength and elongation of the T-block modification for bone-patella tendon-bone allografts. Arthroscopy. 2016;32:2066–2071.CrossRefPubMedGoogle Scholar
  47. 47.
    Noyes FR, Grood ES. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am. 1976;58:1074–1082.CrossRefPubMedGoogle Scholar
  48. 48.
    Nyland J, Larsen N, Burden R, Chang H, Caborn DN. Biomechanical and tissue handling property comparison of decellularized and cryopreserved tibialis anterior tendons following extreme incubation and rehydration. Knee Surg Sports Traumatol Arthrosc. 2009;17:83–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Olsen E. Use of soft tissue allografts in sports medicine. Adv Oper Orthop. 1993;1:111–128.Google Scholar
  50. 50.
    Pallis M, Svoboda SJ, Cameron KL, Owens BD. Survival comparison of allograft and autograft anterior cruciate ligament reconstruction at the United States Military Academy. Am J Sports Med. 2012;40:1242–1246.CrossRefPubMedGoogle Scholar
  51. 51.
    Pearsall AW, Hollis JM, Russell GV Jr, Scheer Z. A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy. 2003;19:1091–1096.CrossRefPubMedGoogle Scholar
  52. 52.
    Rappé M, Horodyski M, Meister K, Indelicato PA. Nonirradiated versus irradiated achilles allograft in vivo failure comparison. Am J Sports Med. 2007;35:1653–1658.CrossRefPubMedGoogle Scholar
  53. 53.
    Scheffler SU, Gonnermann J, Kamp J, Przybilla D, Pruss A. Remodeling of ACL allografts is inhibited by peracetic acid sterilization. Clin Orthop Relat Res. 2008;466:1810–1818.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Scheffler SU, Scherler J, Pruss A, von Versen R, Weiler A. Biomechanical comparison of human bone-patellar tendon-bone grafts after sterilization with peracetic acid ethanol. Cell Tissue Bank. 2005;6:109–115.CrossRefPubMedGoogle Scholar
  55. 55.
    Schimizzi A, Wedemeyer M, Odell T, Thomas W, Mahar AT, Pedowitz R. Effects of a novel sterilization process on soft tissue mechanical properties for anterior cruciate ligament allografts. Am J Sports Med. 2007;35:612–616.CrossRefPubMedGoogle Scholar
  56. 56.
    Schmidt T, Grabau D, Grotewohl JH, Gohs U, Pruss A, Smith M, Scheffler S, Hoburg A. Does sterilization with fractionated electron beam irradiation prevent ACL tendon allograft from tissue damage? Knee Surg Sports Traumatol Arthrosc. 2017;25:584–594.CrossRefPubMedGoogle Scholar
  57. 57.
    Schmidt T, Hoburg A, Broziat C, Smith MD, Gohs U, Pruss A, Scheffler S. Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL). Cell Tissue Bank. 2012;13:387–400.CrossRefPubMedGoogle Scholar
  58. 58.
    Schwartz HE, Matava MJ, Proch FS, Butler CA, Ratcliffe A, Levy M, Butler DL. The effect of gamma irradiation on anterior cruciate ligament allograft biomechanical and biochemical properties in the caprine model at time zero and at 6 months after surgery. Am J Sports Med. 2006;34:1747–1755.CrossRefPubMedGoogle Scholar
  59. 59.
    Seto AU, Culp BM, Gatt CJ Jr, Dunn M. Radioprotection provides functional mechanics but delays healing of irradiated tendon allografts after ACL reconstruction in sheep. Cell Tissue Bank. 2013;14:655–665.CrossRefPubMedGoogle Scholar
  60. 60.
    Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J. Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy. 2016;32:71–75.CrossRefPubMedGoogle Scholar
  61. 61.
    Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K. Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg Br. 1984;66:672–681.PubMedGoogle Scholar
  62. 62.
    Spragg L, Chen J, Mirzayan R, Love R, Maletis G. The effect of autologous hamstring graft diameter on the likelihood for revision of anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44:1475–1481.CrossRefPubMedGoogle Scholar
  63. 63.
    Sterling JC, Meyers MC, Calvo RD. Allograft failure in cruciate ligament reconstruction follow-up evaluation of eighteen patients. Am J Sports Med. 1995;23:173–178.CrossRefPubMedGoogle Scholar
  64. 64.
    Suhodolčan L, Brojan M, Kosel F, Drobnič M, Alibegović A, Brecelj J. Cryopreservation with glycerol improves the in vitro biomechanical characteristics of human patellar tendon allografts. Knee Surg Sports Traumatol Arthrosc. 2013;21:1218–1225.CrossRefPubMedGoogle Scholar
  65. 65.
    Sun K, Tian S, Zhang J, Xia C, Zhang C, Yu T. Anterior cruciate ligament reconstruction with BPTB autograft, irradiated versus non-irradiated allograft: a prospective randomized clinical study. Knee Surg Sports Traumatol Arthrosc. 2009;17:464–474.CrossRefPubMedGoogle Scholar
  66. 66.
    Suto K, Urabe K, Naruse K, Uchida K, Matsuura T, Mikuni-Takagaki Y, Suto M, Nemoto N, Kamiya K, Itoman M. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank. 2012;13:71–80.CrossRefPubMedGoogle Scholar
  67. 67.
    Swank KR, Behn AW, Dragoo JL. The effect of donor age on structural and mechanical properties of allograft tendons. Am J Sports Med. 2015;43:453–459.CrossRefPubMedGoogle Scholar
  68. 68.
    Szycher M, Sharma CP. Blood Compatible Materials and Devices: Perspectives Towards the 21 st Century. Lancaster, PA, USA: Technomic Pub Co; 1991.Google Scholar
  69. 69.
    Tibor L, Chan PH, Funahashi TT, Wyatt R, Maletis GB, Inacio MC. Surgical technique trends in primary ACL reconstruction from 2007 to 2014. J Bone Joint Surg Am. 2016;98:1079–1089.CrossRefPubMedGoogle Scholar
  70. 70.
    Wei W, Liu Y, Yang X, Tian S, Liu C, Zhang Y, Xu Z, Hu B, Tian Z, Sun K. Fractionation of 50kGy electron beam irradiation: effects on biomechanics of human flexor digitorum superficialis tendons treated with ascorbate. J Biomech. 2013;46:658–661.CrossRefPubMedGoogle Scholar
  71. 71.
    Wei X, Mao Z, Hou Y, Lin L, Xue T, Chen L, Wang H, Yu C. Local administration of TGFbeta-1/VEGF165 gene-transduced bone mesenchymal stem cells for Achilles allograft replacement of the anterior cruciate ligament in rabbits. Biochem Biophys Res Commun. 2011;406:204–210.CrossRefPubMedGoogle Scholar
  72. 72.
    Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 1991;19:217–225.Google Scholar
  73. 73.
    Wright RW, Huston LJ, Spindler KP, Dunn WR, Haas AK, Allen CR, Cooper DE, DeBerardino TM, Lantz B, Mann BJ. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med. 2010;38:1979–1986.CrossRefPubMedGoogle Scholar
  74. 74.
    Yanke AB, Bell R, Lee A, Kang RW, Mather RC 3rd, Shewman EF, Wang VM, Bach BR Jr. The biomechanical effects of 1.0 to 1.2 Mrad of gamma irradiation on human bone-patellar tendon-bone allografts. Am J Sports Med. 2013;41:835–840.CrossRefPubMedGoogle Scholar
  75. 75.
    Yanke AB, Bell R, Lee A, Shewman EF, Wang V, Bach BR Jr. Regional mechanical properties of human patellar tendon allografts. Knee Surg Sports Traumatol Arthrosc. 2015;23:961–967.CrossRefPubMedGoogle Scholar
  76. 76.
    Yanke AB, Bell R, Lee AS, Shewman E, Wang VM, Bach BR Jr. Central-third bone-patellar tendon-bone allografts demonstrate superior biomechanical failure characteristics compared with hemi-patellar tendon grafts. Am J Sports Med. 2013;41:2521–2526.CrossRefPubMedGoogle Scholar
  77. 77.
    Zimmerman MC, Contiliano JH, Parsons JR, Prewett A, Billotti J. The biomechanics and histopathology of chemically processed patellar tendon allografts for anterior cruciate ligament replacement. Am J Sports Med. 1994;22:378–386.CrossRefPubMedGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2017

Authors and Affiliations

  • Drew A. Lansdown
    • 1
  • Andrew J. Riff
    • 1
  • Molly Meadows
    • 1
  • Adam B. Yanke
    • 1
  • Bernard R. BachJr
    • 1
  1. 1.Rush University Medical Center, Midwest Orthopaedics at RushChicagoUSA

Personalised recommendations