The Elixhauser Comorbidity Method Outperforms the Charlson Index in Predicting Inpatient Death After Orthopaedic Surgery

Abstract

Background

Scores derived from comorbidities can help with risk adjustment of quality and safety data. The Charlson and Elixhauser comorbidity measures are well-known risk adjustment models, yet the optimal score for orthopaedic patients remains unclear.

Questions/purposes

We determined whether there was a difference in the accuracy of the Charlson and Elixhauser comorbidity-based measures in predicting (1) in-hospital mortality after major orthopaedic surgery, (2) in-hospital adverse events, and (3) nonroutine discharge.

Methods

Among an estimated 14,007,813 patients undergoing orthopaedic surgery identified in the National Hospital Discharge Survey (1990–2007), 0.80% died in the hospital. The association of each Charlson comorbidity measure and Elixhauser comorbidity measure with mortality was assessed in bivariate analysis. Two main multivariable logistic regression models were constructed, with in-hospital mortality as the dependent variable and one of the two comorbidity-based measures (and age, sex, and year of surgery) as independent variables. A base model that included only age, sex, and year of surgery also was evaluated. The discriminative ability of the models was quantified using the area under the receiver operating characteristic curve (AUC). The AUC quantifies the ability of our models to assign a high probability of mortality to patients who die. Values range from 0.50 to 1.0, with 0.50 indicating no ability to discriminate and 1.0 indicating perfect discrimination.

Results

Elixhauser comorbidity adjustment provided a better prediction of in-hospital case mortality (AUC, 0.86; 95% CI, 0.86–0.86) compared with the Charlson model (AUC, 0.83; 95% CI, 0.83–0.84) and to the base model with no comorbidities (AUC, 0.81; 95% CI, 0.81–0.81). In terms of relative improvement in predictive performance, the Elixhauser measure performed 60% better than the Charlson score in predicting mortality. The Elixhauser model discriminated inpatient morbidity better than the Charlson measure, but the discriminative ability of the model was poor and the difference in the absolute improvement in predictive power between the two models (AUC, 0.01) is of dubious clinical importance. Both comorbidity models exhibited the same degree of discrimination for estimating nonroutine discharge (AUC, 0.81; 95% CI, 0.81–0.82 for both models).

Conclusions

Provider-specific outcomes, particularly inpatient mortality, may be evaluated differently depending on the comorbidity risk adjustment model selected. Future research assessing and comparing the performance of the Charlson and Elixhauser measures in predicting long-term outcomes would be of value.

Level of Evidence

Level II, prognostic study. See the Instructions for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alosh H, Li D, Riley LH 3rd, Skolasky RL. Health care burden of anterior cervical spine surgery: national trends in hospital charges and length of stay, 2000 to 2009. J Spinal Disord Tech. 2013 October 16 [Epub ahead of print].

  2. 2.

    Baldwin LM, Klabunde CN, Green P, Barlow W, Wright G. In search of the perfect comorbidity measure for use with administrative claims data: does it exist? Med Care. 2006;44:745–753.

    PubMed  Article  Google Scholar 

  3. 3.

    Bhattacharyya T, Iorio R, Healy WL. Rate of and risk factors for acute inpatient mortality after orthopaedic surgery. J Bone Joint Surg Am. 2002;84:562–572.

    PubMed  Google Scholar 

  4. 4.

    Centers for Disease Control and Prevention. National Hospital Discharge Survey. Available at: http://www.cdc.gov/nchs/nhds.htm. Accessed May 6, 2014.

  5. 5.

    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–383.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Chu YT, Ng YY, Wu SC. Comparison of different comorbidity measures for use with administrative data in predicting short- and long-term mortality. BMC Health Serv Res. 2010;10:140.

    PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    DeFrances CJ, Lucas CA, Buie VC, Golosinskiy A. 2006 National Hospital Discharge Survey. Natl Health Stat Report. 2008;5:1–20.

    PubMed  Google Scholar 

  8. 8.

    Dennison C, Pokras R. Design and operation of the National Hospital Discharge Survey: 1988 redesign. Vital Health Stat 1. 2000;39:1–42.

    Google Scholar 

  9. 9.

    Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45:613–619.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Dimick JB. How should we risk-adjust hospital outcome comparisons? Arch Surg. 2012;147:135–136.

    PubMed  Article  Google Scholar 

  11. 11.

    Dimick JB, Welch HG, Birkmeyer JD. Surgical mortality as an indicator of hospital quality: the problem with small sample size. JAMA. 2004;292:847–851.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36:8–27.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Everhart JS, Altneu E, Calhoun JH. Medical comorbidities are independent preoperative risk factors for surgical infection after total joint arthroplasty. Clin Orthop Relat Res. 2013;471:3112–3119.

    PubMed  Article  Google Scholar 

  14. 14.

    Fleischut PM, Mazumdar M, Memtsoudis SG. Perioperative database research: possibilities and pitfalls. Br J Anaesth. 2013;111:532–534.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ghali WA, Quan H, Brant R. Risk adjustment using administrative data: impact of a diagnosis-type indicator. J Gen Intern Med. 2001;16:519–524.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Gonzalez Della Valle A, Chiu YL, Ma Y, Mazumdar M, Memtsoudis SG. The metabolic syndrome in patients undergoing knee and hip arthroplasty: trends and in-hospital outcomes in the United States. J Arthroplasty. 2012;27:1743–1749 e1741.

  17. 17.

    Gordon M, Stark A, Skoldenberg OG, Karrholm J, Garellick G. The influence of comorbidity scores on re-operations following primary total hip replacement: comparison and validation of three comorbidity measures. Bone Joint J. 2013;95:1184–1191.

    PubMed  Article  Google Scholar 

  18. 18.

    Grendar J, Shaheen AA, Myers RP, Parker R, Vollmer CM Jr, Ball CG, Quan ML, Kaplan GG, Al-Manasra T, Dixon E. Predicting in-hospital mortality in patients undergoing complex gastrointestinal surgery: determining the optimal risk adjustment method. Arch Surg. 2012;147:126–135.

    PubMed  Article  Google Scholar 

  19. 19.

    Hall MJ, DeFrances CJ, Williams SN, Golosinskiy A, Schwartzman A. National Hospital Discharge Survey: 2007 summary. Natl Health Stat Report. 2010;29:1–20, 24.

    Google Scholar 

  20. 20.

    Harrell FE Jr, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med. 1984;3:143–152.

    PubMed  Article  Google Scholar 

  21. 21.

    Harris MB, Reichmann WM, Bono CM, Bouchard K, Corbett KL, Warholic N, Simon JB, Schoenfeld AJ, Maciolek L, Corsello P, Losina E, Katz JN. Mortality in elderly patients after cervical spine fractures. J Bone Joint Surg Am. 2010;92:567–574.

    PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Humphries W, Jain N, Pietrobon R, Socolowski F, Cook C, Higgins L. Effect of the Deyo score on outcomes and costs in shoulder arthroplasty patients. J Orthop Surg (Hong Kong). 2008;16:186–191.

    CAS  Google Scholar 

  23. 23.

    Iezzoni LI. Assessing quality using administrative data. Ann Intern Med. 1997;127:666–674.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Johnson CC, Sodha S, Garzon-Muvdi J, Petersen SA, McFarland EG. Does preoperative American Society of Anesthesiologists score relate to complications after total shoulder arthroplasty? Clin Orthop Relat Res. 2014;472:1589–1596.

    PubMed  Article  Google Scholar 

  25. 25.

    Khanna S, Keddis MT, Noheria A, Baddour LM, Pardi DS. Acute kidney injury is an independent marker of severity in Clostridium difficile infection: a nationwide survey. J Clin Gastroenterol. 2013;47:481–484.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Krupic F, Eisler T, Eliasson T, Garellick G, Gordon M, Karrholm J. No influence of immigrant background on the outcome of total hip arthroplasty: 140,299 patients born in Sweden and 11,539 immigrants in the Swedish Hip Arthroplasty Register. Acta Orthop. 2013;84:18–24.

    PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Lieffers JR, Baracos VE, Winget M, Fassbender K. A comparison of Charlson and Elixhauser comorbidity measures to predict colorectal cancer survival using administrative health data. Cancer. 2011;117:1957–1965.

    PubMed  Article  Google Scholar 

  28. 28.

    Maradit Kremers H, Visscher SL, Kremers WK, Naessens JM, Lewallen DG. Obesity increases length of stay and direct medical costs in total hip arthroplasty. Clin Orthop Relat Res. 2014;472:1232–1239.

  29. 29.

    Memtsoudis SG. Limitations associated with the analysis of data from administrative databases. Anesthesiology. 2009;111:449; author reply 450–451.

  30. 30.

    Memtsoudis SG, Gonzalez Della Valle A, Besculides MC, Gaber L, Sculco TP. In-hospital complications and mortality of unilateral, bilateral, and revision TKA: based on an estimate of 4,159,661 discharges. Clin Orthop Relat Res. 2008;466:2617–2627.

    PubMed Central  PubMed  Article  Google Scholar 

  31. 31.

    Memtsoudis SG, Kirksey M, Ma Y, Chiu YL, Mazumdar M, Pumberger M, Girardi FP. Metabolic syndrome and lumbar spine fusion surgery: epidemiology and perioperative outcomes. Spine (Phila Pa 1976). 2012;37:989–995.

  32. 32.

    Memtsoudis SG, Stundner O, Rasul R, Sun X, Chiu YL, Fleischut P, Danninger T, Mazumdar M. Sleep apnea and total joint arthroplasty under various types of anesthesia: a population-based study of perioperative outcomes. Reg Anesth Pain Med. 2013;38:274–281.

    PubMed Central  PubMed  Article  Google Scholar 

  33. 33.

    Menendez ME, Neuhaus V, Bot AG, Ring D, Cha TD. Psychiatric disorders and major spine surgery: epidemiology and perioperative outcomes. Spine (Phila Pa 1976). 2014;39:E111–E122.

  34. 34.

    Menendez ME, Neuhaus V, Bot AG, Vrahas MS, Ring D. Do psychiatric comorbidities influence inpatient death, adverse events, and discharge after lower extremity fractures? Clin Orthop Relat Res. 2013;471:3336–3348.

    PubMed  Article  Google Scholar 

  35. 35.

    Mittlbock M, Heinzl H. A note on R2 measures for Poisson and logistic regression models when both models are applicable. J Clin Epidemiol. 2001;54:99–103.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Myers RP, Quan H, Hubbard JN, Shaheen AA, Kaplan GG. Predicting in-hospital mortality in patients with cirrhosis: results differ across risk adjustment methods. Hepatology. 2009;49:568–577.

    PubMed  Article  Google Scholar 

  37. 37.

    Neuhaus V, King J, Hageman MG, Ring DC. Charlson comorbidity indices and in-hospital deaths in patients with hip fractures. Clin Orthop Relat Res. 2013;471:1712–1719.

    PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    Neuhaus V, Swellengrebel CH, Bossen JK, Ring D. What are the factors influencing outcome among patients admitted to a hospital with a proximal humeral fracture? Clin Orthop Relat Res. 2013;471:1698–1706.

    PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Nikkel LE, Fox EJ, Black KP, Davis C, Andersen L, Hollenbeak CS. Impact of comorbidities on hospitalization costs following hip fracture. J Bone Joint Surg Am. 2012;94:9–17.

    PubMed  Article  Google Scholar 

  40. 40.

    Patel KV, Brennan KL, Brennan ML, Jupiter DC, Shar A, Davis ML. Association of a modified frailty index with mortality after femoral neck fracture in patients aged 60 years and older. Clin Orthop Relat Res. 2013;472:1010–1017.

    PubMed  Article  Google Scholar 

  41. 41.

    Pine M, Jordan HS, Elixhauser A, Fry DE, Hoaglin DC, Jones B, Meimban R, Warner D, Gonzales J. Enhancement of claims data to improve risk adjustment of hospital mortality. JAMA. 2007;297:71–76.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, Sundararajan V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173:676–682.

    PubMed  Article  Google Scholar 

  43. 43.

    Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–1139.

    PubMed  Article  Google Scholar 

  44. 44.

    Rincon F, Rossenwasser RH, Dumont A. The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery. 2013;73:217–222; discussion 212–213.

    PubMed  Article  Google Scholar 

  45. 45.

    Schairer WW, Vail TP, Bozic KJ. What are the rates and causes of hospital readmission after total knee arthroplasty? Clin Orthop Relat Res. 2014;472:181–187.

    PubMed  Article  Google Scholar 

  46. 46.

    Schneeweiss S, Seeger JD, Maclure M, Wang PS, Avorn J, Glynn RJ. Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data. Am J Epidemiol. 2001;154:854–864.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Schneeweiss S, Wang PS, Avorn J, Glynn RJ. Improved comorbidity adjustment for predicting mortality in Medicare populations. Health Serv Res. 2003;38:1103–1120.

    PubMed Central  PubMed  Article  Google Scholar 

  48. 48.

    Scott FI, Osterman MT, Mahmoud NN, Lewis JD. Secular trends in small-bowel obstruction and adhesiolysis in the United States: 1988–2007. Am J Surg. 2012;204:315–320.

    PubMed Central  PubMed  Article  Google Scholar 

  49. 49.

    Singh JA, Sperling JW, Cofield RH. Ninety day mortality and its predictors after primary shoulder arthroplasty: an analysis of 4,019 patients from 1976–2008. BMC Musculoskelet Disord. 2011;12:231.

    PubMed Central  PubMed  Article  Google Scholar 

  50. 50.

    Sloan FA, Perrin JM, Valvona J. In-hospital mortality of surgical patients: is there an empiric basis for standard setting? Surgery. 1986;99:446–454.

    CAS  PubMed  Google Scholar 

  51. 51.

    Soohoo NF, Farng E, Lieberman JR, Chambers L, Zingmond DS. Factors that predict short-term complication rates after total hip arthroplasty. Clin Orthop Relat Res. 2010;468:2363–2371.

    PubMed Central  PubMed  Article  Google Scholar 

  52. 52.

    Southern DA, Quan H, Ghali WA. Comparison of the Elixhauser and Charlson/Deyo methods of comorbidity measurement in administrative data. Med Care. 2004;42:355–360.

    PubMed  Article  Google Scholar 

  53. 53.

    Tseng VL, Yu F, Lum F, Coleman AL. Risk of fractures following cataract surgery in Medicare beneficiaries. JAMA. 2012;308:493–501.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30:1105–1117.

    PubMed Central  PubMed  Google Scholar 

  55. 55.

    van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care. 2009;47:626–633.

    PubMed  Article  Google Scholar 

  56. 56.

    Voskuijl T, Hageman M, Ring D. Higher Charlson comorbidity index scores are associated with readmission after orthopaedic surgery. Clin Orthop Relat Res. 2014;472:1638–1644.

    PubMed  Article  Google Scholar 

  57. 57.

    Vulcano E, Lee YY, Yamany T, Lyman S, Valle AG. Obese patients undergoing total knee arthroplasty have distinct preoperative characteristics: an institutional study of 4718 patients. J Arthroplasty. 2013;28:1125–1129.

    PubMed  Article  Google Scholar 

  58. 58.

    Wasielewski RC, Weed H, Prezioso C, Nicholson C, Puri RD. Patient comorbidity: relationship to outcomes of total knee arthroplasty. Clin Orthop Relat Res. 1998;356:85–92.

    PubMed  Article  Google Scholar 

  59. 59.

    Yoshihara H, Yoneoka D. Trends in the surgical treatment for spinal metastasis and the in-hospital patient outcomes in the United States from 2000 to 2009. Spine J. 2013 pii: S1529-9430(13)01844-5.

  60. 60.

    Yoshihara H, Yoneoka D. Incidental dural tear in spine surgery: analysis of a nationwide database. Eur Spine J. 2014;23:389–394.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariano E. Menendez MD.

Additional information

Each author certifies that he or she, or a member of his or her immediate family, has no funding or commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research ® editors and board members are on file with the publication and can be viewed on request.

Each author certifies that his or her institution waived approval for the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

This work was performed at the Orthopaedic Hand and Upper Extremity Service, Massachusetts General Hospital, Boston, MA, USA.

Appendix

Appendix

List of ICD-9 codes included to identify adverse events

Adverse events ICD-9 codes
Postoperative shock 998.0
Hematoma or seroma 998.1
Disruption of wound 998.3
Postoperative infection 998.5
Acute posthemorrhagic anemia 285.1
Complications not elsewhere classified 997
Acute renal failure 580, 584
Acute myocardial infarction 410
Ventricular arrhythmias and cardiac arrest 427.4, 427.5
Pneumonia and pulmonary congestion 482, 485, 486, 514, 5184
Iatrogenic postoperative hypotension 458.29
Pulmonary embolism 415.1
Induced mental disorders 291, 292, 293
Cerebrovascular disease 430, 431, 432, 433, 434, 435, 436
Fat embolism 958.1
Pulmonary insufficiency after trauma, surgery, transfusion, or acute respiratory distress syndrome 518.5, 518.7, 518.81
Thrombotic events 451.1, 451.2, 453.2, 453.4, 453.8, 453.9
Intubation and mechanical ventilation 96.04, 96.07
Transfusion of blood (components) 99.0
Conversion of cardiac rhythm 99.6
  1. ICD-9 = International Classification of Diseases, 9th Revision.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menendez, M.E., Neuhaus, V., van Dijk, C.N. et al. The Elixhauser Comorbidity Method Outperforms the Charlson Index in Predicting Inpatient Death After Orthopaedic Surgery. Clin Orthop Relat Res 472, 2878–2886 (2014). https://doi.org/10.1007/s11999-014-3686-7

Download citation

Keywords

  • Inpatient Mortality
  • Major Orthopaedic Surgery
  • National Hospital Discharge Survey
  • Risk Adjustment Model
  • Elixhauser Comorbidity