Clinical Orthopaedics and Related Research®

, Volume 472, Issue 3, pp 915–922

Does an Unloader Brace Reduce Knee Loading in Normally Aligned Knees?

  • Jay R. Ebert
  • Karen Hambly
  • Brendan Joss
  • Timothy R. Ackland
  • Cyril J. Donnelly
Basic Research



Unloading knee braces often are used after tibiofemoral articular cartilage repair. However, the experimental basis for their use in patients with normal tibiofemoral alignment such as those undergoing cartilage repair is lacking.


The purpose of this study was to investigate the effect of varus and valgus adjustments to one commercially available unloader knee brace on tibiofemoral joint loading and knee muscle activation in populations with normal knee alignment.


The gait of 20 healthy participants (mean age 28.3 years; body mass index 22.9 kg/m2) was analyzed with varus and valgus knee brace conditions and without a brace. Spatiotemporal variables were calculated as were knee adduction moments and muscle activation during stance. A directed cocontraction ratio was also calculated to investigate the relative change in the activation of muscles with medial (versus lateral) moment arms about the knee. Group differences were investigated using analysis of variance. The numbers available would have provided 85% power to detect a 0.05 increase or decrease in the knee adduction moment (Nm/kg*m) in the braced condition compared with the no brace condition.


With the numbers available, there were no differences between the braced and nonbraced conditions in kinetic or muscle activity parameters. Both varus (directed cocontraction ratio 0.29, SD 0.21, effect size 0.95, p = 0.315) and valgus (directed cocontraction ratio 0.28, SD 0.24, effect size 0.93, p = 0.315) bracing conditions increased the relative activation of muscles with lateral moment arms compared with no brace (directed cocontraction ratio 0.49, SD 0.21).


Results revealed inconsistencies in knee kinetics and muscle activation strategies after varus and valgus bracing conditions. Although in this pilot study the results were not statistically significant, the magnitudes of the observed effect sizes were moderate to large and represent suitable pilot data for future work. Varus bracing increased knee adduction moments as expected; however, they produced a more laterally directed muscular activation profile. Valgus bracing produced a more laterally directed muscular activation profile; however, it increased knee adduction moments.

Clinical Relevance

When evaluating changes in knee kinetics and muscle activation together, this study demonstrated conflicting outcomes and questions the efficacy for the use of unloader bracing for people with normally aligned knees such as those after articular cartilage repair.


  1. 1.
    Arokoski J, Jurvelin J, Vaatainen U. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports. 2000;10:186–198.PubMedCrossRefGoogle Scholar
  2. 2.
    Barrios JA, Higginson JS, Royer TD, Davis IS. Static and dynamic correlates of the knee adduction moment in healthy knees ranging from normal to varus-aligned. Clin Biomech (Bristol, Avon). 2009;24:850–854.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Beaudreuil J, Bendaya S, Faucher M, Coudeyre E, Ribinik P, Revel M, Rannou F. Clinical practice guidelines for rest orthosis, knee sleeves, and unloading knee braces in knee osteoarthritis. Joint Bone Spine. 2009;76:629–636.PubMedCrossRefGoogle Scholar
  4. 4.
    Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36:1159–1168.PubMedCrossRefGoogle Scholar
  5. 5.
    Buchanan TS, Lloyd DG. Muscle activation at the human knee during isometric flexion-extension and varus-valgus loads. J Orthop Res. 1997;15:11–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ. The mechanobiology of articular cartilage development and degeneration. Clin Orthop. 2004:S69–77.Google Scholar
  7. 7.
    Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Bio-Medical Engineering. 2007;54:1940–1950.PubMedCrossRefGoogle Scholar
  8. 8.
    Dennis AD, Komistek RD. An in vivo analysis of the effectiveness of the osteoarthritic knee brace during heel strike and midstance of gait. Acta Chir Orthop Traumatol Cech. 1999;66:323–327.PubMedGoogle Scholar
  9. 9.
    Dennis DA, Komistek RD, Nadaud MC, Mahfouz M. Evaluation of off-loading braces for treatment of unicompartmental knee arthrosis. J Arthroplasty. 2006;21:2–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Donnelly CJ, Elliott BC, Doyle TL, Finch CF, Dempsey AR, Lloyd DG. Changes in knee joint biomechanics following balance and technique training and a season of Australian football. Br J Sports Med. 2012;46:917–922.PubMedCrossRefGoogle Scholar
  11. 11.
    Donnelly CJ, Lloyd DG, Elliott BC, Reinbolt JA. Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk. J Biomech. 2012;45:1491–1497.PubMedCrossRefGoogle Scholar
  12. 12.
    Draganich L, Reider B, Rimington T, Piotrowski G, Mallik K, Nasson S. The effectiveness of self-adjustable custom and off-the-shelf bracing in the treatment of varus gonarthrosis. J Bone Joint Surg Am. 2006;88:2645–2652.PubMedCrossRefGoogle Scholar
  13. 13.
    Ebert JR, Fallon M, Ackland TR, Wood DJ, Janes GC. Arthroscopic Matrix-Induced Autologous Chondrocyte Implantation: 2-Year Outcomes. Arthroscopy. 2012.Google Scholar
  14. 14.
    Ebert JR, Lloyd DG, Ackland T, Wood DJ. Knee biomechanics during walking gait following matrix-induced autologous chondrocyte implantation. Clin Biomech (Bristol, Avon). 2010;25:1011–1017.PubMedCrossRefGoogle Scholar
  15. 15.
    Ebert JR, Robertson WB, Lloyd DG, Zheng MH, Wood DJ, Ackland T. A prospective, randomized comparison of traditional and accelerated approaches to postoperative rehabilitation following autologous chondrocyte implantation: 2-year clinical outcomes. Cartilage. 2010:1947603510362907.Google Scholar
  16. 16.
    Ebert JR, Robertson WB, Woodhouse J, Fallon M, Zheng MH, Ackland T, Wood DJ. Clinical and magnetic resonance imaging-based outcomes to 5 years after Matrix-Induced Autologous Chondrocyte Implantation to address articular cartilage defects in the knee. 39. 2011;4:753–763.Google Scholar
  17. 17.
    Fantini Pagani CH, Hinrichs M, Bruggemann GP. Kinetic and kinematic changes with the use of valgus knee brace and lateral wedge insoles in patients with medial knee osteoarthritis. J Orthop Res. 2012;30:1125–1132.PubMedCrossRefGoogle Scholar
  18. 18.
    Fantini Pagani CH, Potthast W, Bruggemann GP. The effect of valgus bracing on the knee adduction moment during gait and running in male subjects with varus alignment. Clin Biomech (Bristol, Avon). 2010;25:70–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Foroughi N, Smith R, Vanwanseele B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. Knee. 2009;16:303–309.PubMedCrossRefGoogle Scholar
  20. 20.
    Gaasbeek RD, Groen BE, Hampsink B, van Heerwaarden RJ, Duysens J. Valgus bracing in patients with medial compartment osteoarthritis of the knee. A gait analysis study of a new brace. Gait & Posture. 2007;26:3–10.CrossRefGoogle Scholar
  21. 21.
    Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S. Autologous Chondrocyte Implantation Postoperative Care and Rehabilitation: Science and Practice. Am J Sports Med. 2006;34:1–19.CrossRefGoogle Scholar
  22. 22.
    Hambly K, Silvers HJ, Steinwachs M. Rehabilitation after articular cartilage repair of the knee in the football (soccer) player. Cartilage. 2011;3:50S–56S.CrossRefGoogle Scholar
  23. 23.
    Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC. Failures, re-operations, and complications after autologous chondrocyte implantation - A systematic review. Osteoarthritis Cartilage. 2011;19:779–791.PubMedCrossRefGoogle Scholar
  24. 24.
    Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin Biomech (Bristol, Avon). 2009;24:833–841.Google Scholar
  25. 25.
    Khan KM, Scott A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med. 2009;43:247–252.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kirkley A, Webster-Bogaert S, Litchfield R, Amendola A, MacDonald S, McCalden R, Fowler P. The effect of bracing on varus gonarthrosis. J Bone Joint Surg Am. 1999;81:539–548.PubMedGoogle Scholar
  27. 27.
    Komistek RD, Dennis DA, Northcut EJ, Wood A, Parker AW, Traina SM. An in vivo analysis of the effectiveness of the osteoarthritic knee brace during heel-strike of gait. J Arthroplasty. 1999;14:738–742.PubMedCrossRefGoogle Scholar
  28. 28.
    Kutzner I, Kuther S, Heinlein B, Dymke J, Bender A, Halder AM, Bergmann G. The effect of valgus braces on medial compartment load of the knee joint - in vivo load measurements in three subjects. J Biomech. 2011;44:1354–1360.PubMedCrossRefGoogle Scholar
  29. 29.
    Lloyd DG, Buchanan TS. Strategies of muscular support of varus and valgus isometric loads at the human knee. J Biomech. 2001;34:1257–1267.PubMedCrossRefGoogle Scholar
  30. 30.
    Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M. Characteristic Complications After Autologous Chondrocyte Implantation for Cartilage Defects of the Knee Joint. Am J Sports Med. 2008;36:2091–2099.PubMedCrossRefGoogle Scholar
  31. 31.
    Pollo FE, Otis JC, Backus SI, Warren RF, Wickiewicz TL. Reduction of medial compartment loads with valgus bracing of the osteoarthritic knee. Am J Sports Med. 2002;30:414–421.PubMedGoogle Scholar
  32. 32.
    Raja K, Dewan N. Efficacy of knee braces and foot orthoses in conservative management of knee osteoarthritis: a systematic review. Am J Phys Med Rehabil. 2011;90:247–262.PubMedCrossRefGoogle Scholar
  33. 33.
    Ramsey DK, Briem K, Axe MJ, Snyder-Mackler L. A mechanical theory for the effectiveness of bracing for medial compartment osteoarthritis of the knee. J Bone Joint Surg Am. 2007;89:2398–2407.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Rannou F, Poiraudeau S, Beaudreuil J. Role of bracing in the management of knee osteoarthritis. Curr Opin Rheumatol. 2010;22:218–222.PubMedCrossRefGoogle Scholar
  35. 35.
    Richards J, Sanchez-Ballester J, Jones R, Darke N, Livingstone B. A comparison of knee braces during walking for the treatment of osteoarthritis of the medial compartment of the knee. J Bone Joint Surg Br. 2005;87-B:937–939.PubMedCrossRefGoogle Scholar
  36. 36.
    Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 2008;36:235–246.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Assche D, Staes F, Van Caspel D, Vanlauwe J, Bellemans J, Saris DB, Luyten FP. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2010;18:486–495.PubMedCrossRefGoogle Scholar
  38. 38.
    Wood JJ, Malek MA, Frassica FJ, Polder JA, Mohan AK, Bloom ET, Braun MM, Cote TR. Autologous Cultured Chondrocytes: Adverse Events Reported to the United States Food and Drug Administration. J Bone Joint Surg Am. 2006;88:503–507.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2013

Authors and Affiliations

  • Jay R. Ebert
    • 1
  • Karen Hambly
    • 2
  • Brendan Joss
    • 3
  • Timothy R. Ackland
    • 1
  • Cyril J. Donnelly
    • 1
  1. 1.School of Sport Science, Exercise and HealthThe University of Western AustraliaPerthWestern Australia
  2. 2.School of Sport and Exercise SciencesUniversity of KentKentUK
  3. 3.Hollywood Functional Rehabilitation ClinicPerthAustralia

Personalised recommendations