Clinical Orthopaedics and Related Research®

, Volume 472, Issue 2, pp 687–694 | Cite as

Local Alendronic Acid Elution Increases Net Periimplant Bone Formation: A Micro-CT Analysis

  • J. Dennis BobynEmail author
  • Rebecca Thompson
  • Letitia Lim
  • Jenny Ann Pura
  • Kristian Bobyn
  • Michael Tanzer
Symposium: 2013 Hip Society Proceedings



Fixation of cementless orthopaedic implants is not always achieved, particularly in challenging scenarios such as revision surgery, trauma, and tumor reconstruction. An adjunct therapy for improving implant fixation would improve the reliability and durability of certain reconstructive procedures.


The purpose of this study was to determine the effect of local elution of the bisphosphonate alendronic acid on bone formation around porous titanium implants in an animal model.


Porous-coated cylindrical rods were coated with either 0.2 mg or 1.0 mg alendronic acid before bilateral surgical implantation into the femoral intramedullary canals of 10 experimental dogs. Twelve weeks after surgery, the femora were harvested and scanned with micro-CT to quantify the percentage volume of bone within the immediate periimplant space. Four femora from two dogs were also processed for undecalcified thin-section histology and analysis with backscattered scanning electron microscopy. Three histologic sections from each of these four femora were anatomically matched with transverse micro-CT sections to enable direct comparison of the area fraction of bone within the periimplant space.


Compared with paired controls, micro-CT analysis showed that local elution of alendronic acid increased periimplant bone at both doses of 0.2 mg (+52%, p = 0.01) and 1.0 mg (+152%, p = 0.004) with 1.0 mg resulting in a 2.9-fold greater mean relative increase compared with 0.2 mg (p = 0.002). Micro-CT measurements of periimplant bone formation correlated very strongly with the backscattered scanning electron microscopy measurements (R = 0.965, p < 0.001).


Local elution of alendronic acid causes a dose-dependent net increase in periimplant bone formation in an animal model.

Clinical Relevance

This concept has potential to improve the biologic fixation of porous reconstructive implants.

Level of Evidence

Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.


Bisphosphonate Zoledronic Acid Alendronic Acid Orthopaedic Implant Volume Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Pipeline Biotechnology for providing the implants.


  1. 1.
    Arabmotlagh M, Pilz M, Warzecha J, Rauschmann M. Changes of femoral periprosthetic bone mineral density 6 years after treatment with alendronate following total hip arthroplasty. J Orthop Res. 2009;27:183–188.PubMedCrossRefGoogle Scholar
  2. 2.
    Bhandari M, Bajammal S, Guyatt GH, Griffith L, Busse JW, Schünemann H, Einhorn TA. . Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am. 2005;87:293–301.PubMedCrossRefGoogle Scholar
  3. 3.
    Bobyn JD, Hacking SA, Krygier JJ, Harvey EJ, Little DG, Tanzer M. Zoledronic acid causes enhancement of bone growth into porous implants. J Bone Joint Surg Br. 2005;87:416–420.PubMedCrossRefGoogle Scholar
  4. 4.
    Bobyn JD, McKenzie K, Karabasz D, Krygier JJ, Tanzer M. Locally delivered bisphosphonate for enhancement of bone formation and implant fixation. J Bone Joint Surg. 2009;91(Suppl 6):23–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Cook RE, Jenkins PJ, Walmsley PJ, Patton JT, Robinson CM. Risk factors for periprosthetic fractures of the hip: a survivorship analysis. Clin Orthop Relat Res. 2008;466:1652–1656.PubMedCrossRefGoogle Scholar
  6. 6.
    Friedl G, Radl R, Stihsen C, Rehak P, Aigner R, Windhager R. The effect of a single infusion of zoledronic acid on early implant migration in total hip arthroplasty. A randomized, double-blind, controlled trial. J Bone Joint Surg Am. 2009;91:274–281.PubMedCrossRefGoogle Scholar
  7. 7.
    Gao Y, Zou S, Liu X, Bao C, Hu J. The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats. Biomaterials. 2009;30:1790–1796.PubMedCrossRefGoogle Scholar
  8. 8.
    Garbuz DS, Hu Y, Kim WY, Duan K, Masri BA, Oxland TR, Burt H, Wang R, Duncan CP. Enhanced gap filling and osteoconduction associated with alendronate-calcium phosphate-coated porous tantalum. J Bone Joint Surg Am. 2008;90:1090–1100.PubMedCrossRefGoogle Scholar
  9. 9.
    Garcia-Moreno C, Serrano S, Nacher M, Farré M, Díez A, Mariñoso ML, Carbonell J, Mellibovsky L, Nogués X, Ballester J, Aubía J. Effect of alendronate on cultured normal human osteoblasts. Bone. 1998;22:233–239.PubMedCrossRefGoogle Scholar
  10. 10.
    Goodship AE, Blunn GW, Green J, Coathup MJ. Prevention of strain-induced osteopenia in aseptic loosening of hip prostheses using perioperative bisphosphonate. J Orthop Res. 2008;26:693–703.PubMedCrossRefGoogle Scholar
  11. 11.
    Hilding M, Aspenberg P. Local preoperative treatment with a bisphosphonate improves the fixation of total knee prostheses. Acta Orthop. 2007;78:795–799.PubMedCrossRefGoogle Scholar
  12. 12.
    Jakobsen T, Baas J, Kold S, Bechtold JE, Elmengaard B, Søballe K. Local bisphosphonate treatment increases fixation of hydroxyapatite-coated implants inserted with bone compaction. J Orthop Res. 2009;27:189–194.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lindahl H. Epidemiology of periprosthetic femur fracture around a total hip arthroplasty. Injury. 2007;38:651–654.PubMedCrossRefGoogle Scholar
  14. 14.
    Papapetrou PD. Bisphosphonate-associated adverse events. Hormones. 2009;8:96–110.PubMedGoogle Scholar
  15. 15.
    Peter B, Gauthier O, Laib S, Bujoli B, Guicheux J, Janvier P, van Lenthe GH, Müller R, Zambelli PY, Bouler JM, Pioletti DP. Local delivery of bisphosphonate from coated orthopedic implants increases implant mechanical stability in osteoporotic rats. J Biomed Mater Res A. 2006;76:133–143.PubMedCrossRefGoogle Scholar
  16. 16.
    Peter B, Pioletti DP, Laib S, Bujoli B, Pilet P, Janvier P, Guicheux J, Zambelli PY, Bouler JM, Gauthier O. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36:52–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Prieto-Alhambra B, Javaid MK, Judge A, Murray D, Carr A, Cooper C, Arden NK. Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ. 2011;343:1–9.CrossRefGoogle Scholar
  18. 18.
    Tanzer M, Karabasz D, Krygier JJ, Cohen R, Bobyn JD. Bone augmentation around and within porous implants by local bisphosphonate elution. Clin Orthop Relat Res. 2005;441:30–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Tengvall P, Skoglund B, Askendal A, Aspenberg P. Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials. 2004;25:2133–2138.PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshinari M, Oda Y, Inoue T, Matsuzaka K, Shimono M. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials. 2002;23:2879–2885.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2013

Authors and Affiliations

  • J. Dennis Bobyn
    • 1
    • 2
    Email author
  • Rebecca Thompson
    • 1
  • Letitia Lim
    • 1
  • Jenny Ann Pura
    • 1
  • Kristian Bobyn
    • 1
  • Michael Tanzer
    • 1
    • 2
  1. 1.Jo Miller Orthopaedic Research LaboratoryMontreal General HospitalMontrealCanada
  2. 2.Division of Orthopaedic Surgery, Faculty of MedicineMcGill UniversityMontrealCanada

Personalised recommendations