Clinical Orthopaedics and Related Research®

, Volume 471, Issue 9, pp 2831–2840 | Cite as

Unstable Intertrochanteric Femur Fractures: Is There a Consensus on Definition and Treatment in Germany?

  • Matthias Knobe
  • Gertraud Gradl
  • Andreas Ladenburger
  • Ivan S. Tarkin
  • Hans-Christoph Pape
Symposium: Tscherne Festschrift



Extramedullary and intramedullary implants have improved in recent years, although consensus is lacking concerning the definition and classification of unstable intertrochanteric fractures, with uncertainties regarding treatment.


We conducted a national survey of practicing chairpersons of German institutions to determine current perspectives and perceptions of practice in the diagnosis, management, and surgical treatment of unstable intertrochanteric fractures.


Between January and February 2010, we emailed 575 German chairpersons of trauma and/or orthopaedic departments, asking them to complete a 26-question web-based survey regarding three broad domains: fracture classification and instability criteria, implants and surgical treatment algorithms, and timing of operations. Response rate was 42%.


There was a clear preference for use of the AO/OTA fracture classification with geographic variations. Absence of medial support was considered the main criterion for fracture instability (84%), whereas a broken lateral wall and detached greater trochanter were considered by 4% and 5% of the respondents, respectively, to determine instability. Two percent routinely fixed unstable intertrochanteric fractures with extramedullary devices. Ninety-eight percent of German hospitals reportedly perform surgery within 24 hours after admission. Time to surgery was dependent on hospital level, with more direct surgeries in Level I hospitals.


Despite varying opinions in the literature in recent years, we found some instability criteria (lateral wall breach, a detached greater trochanter) played a minor role in defining an unstable intertrochanteric fracture pattern. Despite recent meta-analyses suggesting clinical equivalence of intra- and extramedullary implants, few respondents routinely treat unstable intertrochanteric fractures with extramedullary plates. Additional studies are required to specify the influence of fracture characteristics on complication rate and function and to establish a classification system with clear treatment recommendations for unstable intertrochanteric fractures.

Level of Evidence

Level V, expert opinion. See the Instructions for Authors for a complete description of levels of evidence.

Supplementary material

11999_2013_2834_MOESM1_ESM.pdf (300 kb)
Supplementary material 1 (PDF 300 kb)
11999_2013_2834_MOESM2_ESM.pdf (296 kb)
Supplementary material 2 (PDF 295 kb)


  1. 1.
    Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften. Leitlinien der Deutschen Gesellschaft für Unfallchirurgie: Pertrochantaere Oberschenkelfraktur. Available at: Accessed January 15, 2013.
  2. 2.
    Audigé L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop. 2003;27:197–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ. A comparison of the long Gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Joint Surg Am. 2010;92:792–798.PubMedCrossRefGoogle Scholar
  4. 4.
    Baumgaertner M, Curtin S, Lindskog D, Keggi J. The value of the tip-apex distance in predicting failure of fixation of pertrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77:1058–1064.PubMedGoogle Scholar
  5. 5.
    Bonnaire F, Götschin U, Kuner EH. [Early and late results of 200 DHS osteosyntheses in the reconstruction of pertrochanteric femoral fractures] [in German]. Unfallchirurg. 1992;95:246–253.PubMedGoogle Scholar
  6. 6.
    Bonnevialle P, Saragaglia D, Ehlinger M, Tonetti J, Maisse N, Adam P, Le Gall C; French Hip and Knee Society (SFHG); Trauma Surgery Academy (GETRAUM). Trochanteric locking nail versus arthroplasty in unstable intertrochanteric fracture in patients aged over 75 years. Orthop Traumatol Surg Res. 2011;97(6 suppl):S95–S100.Google Scholar
  7. 7.
    Bottle A, Aylin P. Mortality associated with delay in operation after hip fracture: observational study. BMJ. 2006;332:947–951.PubMedCrossRefGoogle Scholar
  8. 8.
    Committee on Trauma of the American College of Surgeons. Resource for Optimal Care of the Injured Patient 1999. Chicago, IL: American College of Surgeons; 2000.Google Scholar
  9. 9.
    Deutsches Krankenhaus Adressbuch 2009. Freiburg, Germany: DKA/Rombach Gmbh + Co; 2008.Google Scholar
  10. 10.
    Dimon JH, Hughston JC. Unstable intertrochanteric fractures of the hip. J Bone Joint Surg Am. 1967;49:440–450.PubMedGoogle Scholar
  11. 11.
    Evans EM. The treatment of trochanteric fractures of the femur. J Bone Joint Surg Br. 1949;31:190–203.Google Scholar
  12. 12.
    Feinstein AR. The theory of evaluation of sensibility. In: Clinimetrics. New Haven, CT: Yale University Press; 1987:141–166.Google Scholar
  13. 13.
    Gotfried Y. Percutaneous compression plating of intertrochanteric hip fractures. J Orthop Trauma. 2000;14:490–495.PubMedCrossRefGoogle Scholar
  14. 14.
    Gotfried Y. The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures. Clin Orthop Relat Res. 2004;425:82–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Griffith LE, Cook DJ, Guyatt GH, Charles CA. Comparison of open and closed questionnaire formats in obtaining demographic information from Canadian general internists. J Clin Epidemiol. 1999;52:997–1005.PubMedCrossRefGoogle Scholar
  16. 16.
    Haynes RC, Poll RG, Miles AW, Weston RB. Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury. 1997;28:337–341.PubMedCrossRefGoogle Scholar
  17. 17.
    Jin WJ, Dai LY, Cui YM, Zhou Q, Jiang LS, Lu H. Reliability of classification systems for intertrochanteric fractures of the proximal femur in experienced orthopaedic surgeons. Injury. 2005;36:858–861.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones HW, Johnston P, Parker M. Are short femoral nails superior to the sliding hip screw? A meta-analysis of 24 studies involving 3279 fractures. Int Orthop. 2006;30:69–78.PubMedCrossRefGoogle Scholar
  19. 19.
    Kannegaard PN, van der Mark S, Eiken P, Abrahamsen B. Excess mortality in men compared with women following a hip fracture: national analysis of comedications, comorbidity and survival. Age Ageing. 2010;39:203–209.PubMedCrossRefGoogle Scholar
  20. 20.
    Kitzinger J. Qualitative research: introducing focus groups. BMJ. 1995;311:299–302.PubMedCrossRefGoogle Scholar
  21. 21.
    Knobe M, Drescher W, Heussen N, Sellei RM, Pape HC. Is helical blade nailing superior to locked minimally invasive plating in unstable pertrochanteric fractures? Clin Orthop Relat Res. 2012;470:2302–2312.PubMedCrossRefGoogle Scholar
  22. 22.
    Knobe M, Gradl G, Maier KJ, Drescher W, Jansen-Troy A, Prescher A, Knechtel T, Antony P, Pape HC. Rotationally Stable Screw-Anchor versus Sliding Hip Screw Plate Systems in Stable Trochanteric Femur Fractures: A Biomechanical Evaluation. J Orthop Trauma. 2012 October 30 [Epub ahead of print].Google Scholar
  23. 23.
    Knobe M, Münker R, Schmidt-Rohlfing B, Sellei RM, Schubert H, Erli HJ. Surgical outcome in pertrochanteric femur fracture: the impact of osteoporosis: comparison between DHS and percutaneous compression plate. Z Orthop Unfall. 2008;146:44–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Knobe M, Münker R, Sellei RM, Schmidt-Rohlfing B, Erli HJ, Strobl CS, Niethard FU. Unstable pertrochanteric femur fractures: failure rate, lag screw sliding and outcome with extra- and intramedullary devices (PCCP, DHS and PFN). Z Orthop Unfall. 2009;147:306–313.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuzyk PR, Lobo J, Whelan D, Zdero R, McKee MD, Schemitsch EH. Biomechanical evaluation of extramedullary versus intramedullary fixation for reverse obliquity intertrochanteric fractures. J Orthop Trauma. 2009;23:31–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Langford J, Pillai G, Ugliailoro AD, Yang E. Perioperative lateral trochanteric wall fractures: sliding hip screw versus percutaneous compression plate for intertrochanteric hip fractures. J Orthop Trauma. 2011;25:191–195.PubMedCrossRefGoogle Scholar
  27. 27.
    Lawshe CH. A quantitative approach to content validity. Personnel Psychology. 1975;28:563–575.CrossRefGoogle Scholar
  28. 28.
    Lenich A, Vester H, Nerlich M, Mayr E, Stöckle U, Füchtmeier B. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip-blade vs screw. Injury. 2010;41:1292–1296.PubMedCrossRefGoogle Scholar
  29. 29.
    Leung F, Lau TW, Kwan K, Chow SP, Kung AW. Does timing of surgery matter in fragility hip fractures? Osteoporos Int. 2010;21(suppl 4):S529–S534.PubMedCrossRefGoogle Scholar
  30. 30.
    Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audigé L. Fracture and dislocation classification compendium - 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma. 2007;21(10 suppl):S1–S133.PubMedCrossRefGoogle Scholar
  31. 31.
    Muhr G, Tscherne H, Thomas R. Comminuted trochanteric femoral fractures in geriatric patients: the results of 231 cases treated with internal fixation and acrylic cement. Clin Orthop Relat Res. 1979;138:41–44.PubMedGoogle Scholar
  32. 32.
    Orosz GM, Magaziner J, Hannan EL, Morrison RS, Koval K, Gilbert M, McLaughlin M, Halm EA, Wang JJ, Litke A, Silberzweig SB, Siu AL. Association of timing of surgery for hip fracture and patient outcomes. JAMA. 2004;291:1738–1743.PubMedCrossRefGoogle Scholar
  33. 33.
    Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P; Hip Fracture Study Group. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am. 2007;89:470–475.PubMedCrossRefGoogle Scholar
  34. 34.
    Palm H, Lysén C, Krasheninnikoff M, Holck K, Jacobsen S, Gebuhr P. Intramedullary nailing appears to be superior in pertrochanteric hip fractures with a detached greater trochanter. Acta Orthop. 2011;82:166–170.PubMedCrossRefGoogle Scholar
  35. 35.
    Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010;9:CD000093.Google Scholar
  36. 36.
    Pervez H, Parker MJ, Pryor GA, Lutchman L, Chirodian N. Classification of trochanteric fracture of the proximal femur: a study of the reliability of current systems. Injury. 2002;33:713–715.PubMedCrossRefGoogle Scholar
  37. 37.
    Pervez H, Parker MJ, Vowler S. Prediction of fixation failure after sliding hip screw fixation. Injury. 2004;35:994–998.PubMedCrossRefGoogle Scholar
  38. 38.
    Schipper IB, Marti RK, van der Werken C. Unstable trochanteric femoral fractures: extramedullary or intramedullary fixation: review of literature. Injury. 2004;35:142–151.PubMedCrossRefGoogle Scholar
  39. 39.
    Schmidt-Rohlfing B, Heussen N, Knobe M, Pfeifer R, Kaneshige JR, Pape HC. Re-operation rate after internal fixation of intertrochanteric femur fractures with the Percutaneous Compression Plate (PCCP): what are the risk factors? J Orthop Trauma. 2012 September 3 [Epub ahead of print].Google Scholar
  40. 40.
    Simmermacher RK, Ljungqvist J, Bail H, Hockertz T, Vochteloo AJ, Ochs U, Werken C; AO-PFNA study group. The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury. 2008;39:932–939.PubMedCrossRefGoogle Scholar
  41. 41.
    Singleton RA, Straits BC, Straits MM. Approaches to Social Research. New York, NY: Oxford University Press; 1993.Google Scholar
  42. 42.
    Smektala R, Endres HG, Dasch B, Maier C, Trampisch HJ, Bonnaire F, Pientka L. The effect of time-to-surgery on outcome in elderly patients with proximal femoral fractures. BMC Musculoskelet Disord. 2008;9:171.PubMedCrossRefGoogle Scholar
  43. 43.
    Stern R, Lübbeke A, Suva D, Miozzari H, Hoffmeyer P. Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop. 2011;35:1855–1861.PubMedCrossRefGoogle Scholar
  44. 44.
    van Embden D, Rhemrev SJ, Meylaerts SA, Roukema GR. The comparison of two classifications for trochanteric femur fractures: the AO/ASIF classification and the Jensen classification. Injury. 2010;41:377–381.PubMedCrossRefGoogle Scholar
  45. 45.
    Yaozeng X, Dechun G, Huilin Y, Guangming Z, Xianbin W. Comparative study of trochanteric fracture treated with the proximal femoral nail anti-rotation and the third generation of gamma nail. Injury. 2010;41:986–990.CrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2013

Authors and Affiliations

  • Matthias Knobe
    • 1
  • Gertraud Gradl
    • 1
  • Andreas Ladenburger
    • 2
  • Ivan S. Tarkin
    • 3
  • Hans-Christoph Pape
    • 1
  1. 1.Department of Orthopaedic Trauma, Medical FacultyRWTH Aachen UniversityAachenGermany
  2. 2.Orthopaedic Center for Musculoskeletal Research, Department of Orthopaedic SurgeryKönig-Ludwig-Haus, Julius-Maximilians-UniversityWürzburgGermany
  3. 3.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations