Clinical Orthopaedics and Related Research®

, Volume 471, Issue 5, pp 1654–1660 | Cite as

Patellar Tracking and Anterior Knee Pain are Similar After Medial Parapatellar and Midvastus Approaches in Minimally Invasive TKA

  • Boonchna Pongcharoen
  • Thanasak Yakampor
  • Keerati Charoencholvanish
Clinical Research



Since the medial parapatellar (MPP) approach in conventional TKA can cause patellar maltracking and anterior knee pain, some orthopaedic surgeons use the midvastus (MV) approach instead of the MPP approach to reduce patellar maltracking. Minimally invasive surgical (MIS) TKA has been developed to limit the damage to the surrounding muscle and reduce the necessity of patellar eversion during surgery. Thus, MIS TKA might be associated with proper patellar tracking and a low incidence of anterior knee pain. However, this presumption has not been confirmed.


We asked whether the incidence of patellar maltracking and anterior knee pain differed with the MV and MPP in association with MIS TKA.


We prospectively followed 59 patients (60 knees) treated with 60 primary cemented MIS TKAs from August 2009 to September 2010. We randomized the patients into two groups: 30 who had a limited MPP approach and 30 who had a mini-MV approach. We recorded the occurrence of anterior knee pain, patellar tilting, and subluxation. The minimum followup was 12 months (mean, 18.03 months; range, 12.00–25.08 months).


We found no differences in anterior knee pain (two of 30, 7% versus two of 30, 7%), mean patellar tilt (3.4º ± 2.9º versus 3.0 ± 2.3º), and mean patellar subluxation (1.5 ± 1.1 mm versus 1.1 ± 0.7 mm) between the limited MPP and mini-MV groups, respectively.


MIS TKA using either the MPP or MV approach has a low incidence of patellar maltracking and anterior knee pain.

Level of Evidence

Level I, therapeutic study. See the Guidelines for Authors for a complete description of the levels of evidence.



We thank Paskorn Sritipsukho MD, Department of Clinical Research, Faculty of Medicine, Thammasat University Thailand, for statistical consultation.


  1. 1.
    Archibeck MJ, Camarata D, Trauger J, Allman J, White RE Jr. Indications for lateral retinacular release in total knee replacement. Clin Orthop Relat Res. 2003;414:157–161.PubMedCrossRefGoogle Scholar
  2. 2.
    Baldini A, Anderson JA, Cerulli-Mariani P, Kalyvas J, Pavlov H, Sculco TP. Patellofemoral evaluation after total knee arthroplasty: validation of a new weight-bearing axial radiographic view. J Bone Joint Surg Am. 2007;89:1810–1817.PubMedCrossRefGoogle Scholar
  3. 3.
    Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res. 2001;392:46–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonutti PM, Mont MA, McMahon M, Ragland PS, Kester M. Minimally invasive total knee arthroplasty. J Bone Joint Surg Am. 2004;86(suppl 2):26–32.PubMedGoogle Scholar
  5. 5.
    Burnett RS, Boone JL, Rosenzweig SD, Steger-May K, Barrack RL. Patellar resurfacing compared with nonresurfacing in total knee arthroplasty: a concise follow-up of a randomized trial. J Bone Joint Surg Am. 2009;91:2562–2567.PubMedCrossRefGoogle Scholar
  6. 6.
    Chotanaphuti T, Ongnamthip P, Karnchanalerk K, Udombuathong P. Comparative study between 2 cm limited quadriceps exposure minimal invasive surgery and conventional total knee arthroplasty in quadriceps function: prospective randomized controlled trial. J Med Assoc Thai. 2008;91:203–207.PubMedGoogle Scholar
  7. 7.
    Daluga D, Lombardi AV Jr, Mallory TH, Vaughn BK. Knee manipulation following total knee arthroplasty: analysis of prognostic variables. J Arthroplasty. 1991;6:119–128.PubMedCrossRefGoogle Scholar
  8. 8.
    Dalury DF, Jiranek WA. A comparison of the midvastus and paramedian approaches for total knee arthroplasty. J Arthroplasty. 1999;14:33–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Engh GA, Parks NL, Ammeen DJ. Influence of surgical approach on lateral retinacular releases in total knee arthroplasty. Clin Orthop Relat Res. 1996;331:56–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Figgie HE 3rd, Goldberg VM, Heiple KG, Moller HS 3rd, Gordon NH. The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. J Bone Joint Surg Am. 1986;68:1035–1040.PubMedGoogle Scholar
  11. 11.
    Gomes LS, Bechtold JE, Gustilo RB. Patellar prosthesis positioning in total knee arthroplasty: a roentgenographic study. Clin Orthop Relat Res. 1988;236:72–81.PubMedGoogle Scholar
  12. 12.
    Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res.1989;248:13–14.PubMedGoogle Scholar
  13. 13.
    Laskin RS. Lateral release rates after total knee arthroplasty. Clin Orthop Relat Res. 2001;392:88–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Laskin RS, Beksac B, Phongjunakorn A, Pittors K, Davis J, Shim JC, Pavlov H, Petersen M. Minimally invasive total knee replacement through a mini-midvastus incision: an outcome study. Clin Orthop Relat Res. 2004;428:74–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Laughlin RT, Werries BA, Verhulst SJ, Hayes JM. Patellar tilt in total knee arthroplasty. Am J Orthop (Belle Mead NJ). 1996;25:300–304.Google Scholar
  16. 16.
    Lombardi AV Jr, Berend KR, Mallory TH, Dodds KL, Adam JB. Soft tissue and intra-articular injection of bupivacaine, epinephrine, and morphine has a beneficial effect after total knee arthroplasty. Clin Orthop Relat Res. 2004;428:125–130.PubMedCrossRefGoogle Scholar
  17. 17.
    Maestro A, Suarez MA, Rodriguez L, Guerra C, Murcia A. The midvastus surgical approach in total knee arthroplasty. Int Orthop. 2000;24:104–107.PubMedCrossRefGoogle Scholar
  18. 18.
    Mauerhan DR, Mokris JG, Ly A, Kiebzak GM. Relationship between length of stay and manipulation rate after total knee arthroplasty. J Arthroplasty. 1998;13:896–900.PubMedCrossRefGoogle Scholar
  19. 19.
    Meftah M, Jhurani A, Bhat JA, Ranawat AS, Ranawat CS. The effect of patellar replacement technique on patellofemoral complications and anterior knee pain. J Arthroplasty. 2012;27:1075–1080.e1.PubMedGoogle Scholar
  20. 20.
    Miyagi T, Matsuda S, Miura H, Nagamine R, Urabe K, Inoue S, Iwamoto Y. Changes in patellar tracking after total knee arthroplasty: 10-year followup of Miller-Galante I knees. Orthopedics. 2002;25:811–813.PubMedGoogle Scholar
  21. 21.
    Namba RS, Inacio M. Early and late manipulation improve flexion after total knee arthroplasty. J Arthroplasty. 2007;22(6 suppl 2):58–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Ozkoc G, Hersekli MA, Akpinar S, Ozalay M, Uysal M, Cesur N, Tandogan RN. Time dependent changes in patellar tracking with medial parapatellar and midvastus approaches. Knee Surg Sports Traumatol Arthrosc. 2005;13:654–657.PubMedCrossRefGoogle Scholar
  23. 23.
    Pollock DC, Ammeen DJ, Engh GA. Synovial entrapment: a complication of posterior stabilized total knee arthroplasty. J Bone Joint Surg Am. 2002;84:2174–2178.PubMedGoogle Scholar
  24. 24.
    Rader CP, Lohr J, Wittmann R, Eulert J. Results of total knee arthroplasty with a metal-backed patellar component: a 6-year follow-up study. J Arthroplasty. 1996;11:923–930.PubMedCrossRefGoogle Scholar
  25. 25.
    Scranton PE Jr. Management of knee pain and stiffness after total knee arthroplasty. J Arthroplasty. 2001;16:428–435.PubMedCrossRefGoogle Scholar
  26. 26.
    Sneppen O, Gudmundsson GH, Bunger C. Patellofemoral function in total condylar knee arthroplasty. Int Orthop. 1985;9:65–68.PubMedCrossRefGoogle Scholar
  27. 27.
    Tanavalee A, Thiengwittayaporn S, Itiravivong P. Progressive quadriceps incision during minimally invasive surgery for total knee arthroplasty: the effect on early postoperative ambulation. J Arthroplasty. 2007;22:1013–1018.PubMedCrossRefGoogle Scholar
  28. 28.
    Tria AJ Jr, Coon TM. Minimal incision total knee arthroplasty: early experience. Clin Orthop Relat Res. 2003;416:185–190.PubMedCrossRefGoogle Scholar
  29. 29.
    Vendittoli PA, Makinen P, Drolet P, Lavigne M, Fallaha M, Guertin MC, Varin F. A multimodal analgesia protocol for total knee arthroplasty: a randomized controlled study. J Bone Joint Surg Am. 2006;88:282–289.PubMedCrossRefGoogle Scholar
  30. 30.
    Waters TS, Bentley G. Patellar resurfacing in total knee arthroplasty: a prospective, randomized study. J Bone Joint Surg Am. 2003;85:212–217.PubMedGoogle Scholar
  31. 31.
    White RE Jr, Allman JK, Trauger JA, Dales BH. Clinical comparison of the midvastus and medial parapatellar surgical approaches. Clin Orthop Relat Res. 1999;367:117–122.PubMedCrossRefGoogle Scholar
  32. 32.
    Wood DJ, Smith AJ, Collopy D, White B, Brankov B, Bulsara MK. Patellar resurfacing in total knee arthroplasty: a prospective randomized trial. J Bone Joint Surg Am. 2002;84:187–193.PubMedGoogle Scholar
  33. 33.
    Yang CC, McFadden LA, Dennis DA, Kim RH, Sharma A. Lateral retinacular release rates in mobile- versus fixed-bearing TKA. Clin Orthop Relat Res. 2008;466:2656–2661.Google Scholar
  34. 34.
    Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P. Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee. 2006;13:111–117.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2013

Authors and Affiliations

  • Boonchna Pongcharoen
    • 1
  • Thanasak Yakampor
    • 1
  • Keerati Charoencholvanish
    • 2
  1. 1.Department of Orthopaedic Surgery, Faculty of MedicineThammasat University ThailandKlongluangThailand
  2. 2.Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations