Clinical Orthopaedics and Related Research®

, Volume 471, Issue 5, pp 1615–1621 | Cite as

Contact Patch to Rim Distance Predicts Metal Ion Levels in Hip Resurfacing

  • James P. Yoon
  • Michel J. Le Duff
  • Alicia J. Johnson
  • Karren M. Takamura
  • Edward Ebramzadeh
  • Harlan C. Amstutz
Clinical Research



Component design, size, acetabular orientation, patient gender, and activity level have been suggested as factors leading to elevated metal ion concentrations after-on-metal hip resurfacing arthroplasty (MMHRA). The calculation of the contact patch to rim (CPR) distance integrates component size, design, and acetabular orientation and may be a good predictor of elevated metal ion levels.


We evaluated the effects and the predictive value of the CPR distance on serum cobalt (CoS) and chromium (CrS) ion levels.


We retrospectively studied 182 patients with Conserve Plus MMHRAs at a minimum of 12 months after surgery (median, 57 months; range, 12–165 months). CoS and CrS levels were analyzed using inductively-coupled plasma mass spectrometry. Multiple logistic regression was performed to determine which if any of the factors related to serum ion levels.


Patients with CPR distances of 10 mm or less had a 37-fold increased risk of having elevated CoS of 7 μg/L or higher. Similarly, these patients had an 11-fold increased risk of having elevated CrS of 7 μg/L or higher. Sex and University of California Los Angeles activity scores did not influence the postoperative CoS and CrS levels. The negative predictive value for CPR distance less than 10 mm was 99.3% for CoS greater than 7 μg/L and 98.0% for CrS greater than 7 μg/L.


Our observations suggest the CPR distance would be a useful indicator to determine which patients are at risk for elevated ion levels. Patients with CPR distances greater than 10 mm need not be monitored unless they become symptomatic.


  1. 1.
    Allan DG, Trammell R, Dyrstad B, Barnhart B, Milbrandt JC. Serum cobalt and chromium elevations following hip resurfacing with the Cormet 2000 device. J Surg Orthop Adv. 2007;16:12–18.PubMedGoogle Scholar
  2. 2.
    Amstutz HC, Beaulé PE, Dorey FJ, Le Duff MJ, Campbell PA, Gruen TA. Metal-on-metal hybrid surface arthroplasty: two to six-year follow-up study. J Bone Joint Surg Am. 2004;86:28–39.PubMedGoogle Scholar
  3. 3.
    Amstutz HC, Beaulé PE, Dorey FJ, Le Duff MJ, Campbell PA, Gruen TA. Metal-on-metal hybrid surface arthroplasty: surgical technique. J Bone Joint Surg Am. 2006;88(suppl 1):234–249.PubMedGoogle Scholar
  4. 4.
    Amstutz HC, Le Duff MJ, Campbell PA, Wisk LE, Takamura KM. Complications after metal-on-metal hip resurfacing arthroplasty. Orthop Clin North Am. 2011;42:207–230.PubMedCrossRefGoogle Scholar
  5. 5.
    Amstutz HC, Le Duff MJ, Johnson AJ. Socket position determines hip resurfacing 10-year survivorship. Clin Orthop Relat Res. 2012 Apr 18. [Epub ahead of print].Google Scholar
  6. 6.
    Amstutz HC, Thomas BJ, Jinnah R, Kim W, Grogan T, Yale C. Treatment of primary osteoarthritis of the hip: a comparison of total joint and surface replacement arthroplasty. J Bone Joint Surg Am. 1984;66:228–241.PubMedGoogle Scholar
  7. 7.
    Anissian HL, Stark A, Gustafson A, Good V, Clarke IC. Metal-on-metal bearing in hip prosthesis generates 100-fold less wear debris than metal-on-polyethylene. Acta Orthop. Scand. 1999;70:578–582.PubMedCrossRefGoogle Scholar
  8. 8.
    Back DL, Young DA, Shimmin AJ. How do serum cobalt and chromium levels change after metal-on-metal hip resurfacing? Clin Orthop Relat Res. 2005;438:177–181.PubMedCrossRefGoogle Scholar
  9. 9.
    Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–990.PubMedCrossRefGoogle Scholar
  10. 10.
    Biedermann R, Tonin A, Krismer M, Rachbauer F, Eibl G, Stockl B. Reducing the risk of dislocation after total hip arthroplasty: the effect of orientation of the acetabular component. J Bone Joint Surg Br. 2005;87:762–769.PubMedCrossRefGoogle Scholar
  11. 11.
    Boardman DR., Middleton FR, Kavanagh TG. A benign psoas mass following metal-on-metal resurfacing of the hip. J Bone Joint Surg Br. 2006;88:402–404.PubMedCrossRefGoogle Scholar
  12. 12.
    De Haan R, Campbell P, Reid S, Skipor AK, De Smet K. Metal ion levels in a triathlete with a metal-on-metal resurfacing arthroplasty of the hip. J Bone Joint Surg Br. 2007;89:538–541.PubMedCrossRefGoogle Scholar
  13. 13.
    De Haan R, Campbell PA, Su EP, De Smet KA. Revision of metal-on-metal resurfacing arthroplasty of the hip: the influence of malpositioning of the components. J Bone Joint Surg Br. 2008;90:1158–1163.PubMedCrossRefGoogle Scholar
  14. 14.
    De Haan R, Pattyn C, Gill HS, Murray DW, Campbell PA, De Smet K. Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg Br. 2008;90:1291–1297.PubMedCrossRefGoogle Scholar
  15. 15.
    De Smet K, De Haan R, Calistri A, Campbell PA, Ebramzadeh E, Pattyn C, Gill HS. Metal ion measurement as a diagnostic tool to identify problems with metal-on-metal hip resurfacing. J Bone Joint Surg Am. 2008;90(suppl 4):202–208.PubMedCrossRefGoogle Scholar
  16. 16.
    Desy NM, Bergeron SG, Petit A, Huk OL, Antoniou J. Surgical variables influence metal ion levels after hip resurfacing. Clin Orthop Relat Res. 2011;469:1635–1641.PubMedCrossRefGoogle Scholar
  17. 17.
    Hart AJ, Buddhdev P, Winship P, Faria N, Powell JJ, Skinner JA. Cup inclination angle of greater than 50 degrees increases whole blood concentrations of cobalt and chromium ions after metal-on-metal hip resurfacing. Hip Int. 2008;18:212–219.PubMedGoogle Scholar
  18. 18.
    Hart AJ, Skinner JA, Henckel J, Sampson B, Gordon F. Insufficient acetabular version increases blood metal ion levels after metal-on-metal hip resurfacing. Clin Orthop Relat Res. 2011;469:2590–2597.PubMedCrossRefGoogle Scholar
  19. 19.
    Heisel C, Silva M, Skipor AK, Jacobs JJ, Schmalzried TP. The relationship between activity and ions in patients with metal-on-metal bearing hip prostheses. J Bone Joint Surg Am. 2005;87:781–787.PubMedCrossRefGoogle Scholar
  20. 20.
    Heisel C, Streich N, Krachler M, Jakubowitz E, Kretzer JP. Characterization of the running-in period in total hip resurfacing arthroplasty: an in vivo and in vitro metal ion analysis. J Bone Joint Surg Am. 2008;90(suppl 3):125–133.PubMedCrossRefGoogle Scholar
  21. 21.
    Hing CB, Back DL, Bailey M, Young DA, Dalziel RE, Shimmin AJ. The results of primary Birmingham hip resurfacings at a mean of five years: an independent prospective review of the first 230 hips. J Bone Joint Surg Br. 2007;89:1431–1438.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim PR, Beaulé PE, Dunbar M, Lee JK, Birkett N, Turner MC, Yenugadhati N, Armstrong V, Krewski D. Cobalt and chromium levels in blood and urine following hip resurfacing arthroplasty with the Conserve Plus implant. J Bone Joint Surg Am. 2011;93(suppl 2):107–117.PubMedCrossRefGoogle Scholar
  23. 23.
    Kwon YM, Ostlere SJ, McLardy-Smith P, Athanasou NA, Gill HS, Murray DW. “Asymptomatic” pseudotumors after metal-on-metal hip resurfacing arthroplasty: prevalence and metal ion study. J Arthroplasty. 2011;26:511–518.PubMedCrossRefGoogle Scholar
  24. 24.
    Langton DJ, Jameson SS, Joyce TJ, Webb J, Nargol AV. The effect of component size and orientation on the concentrations of metal ions after resurfacing arthroplasty of the hip. J Bone Joint Surg Br. 2008;90:1143–1151.PubMedGoogle Scholar
  25. 25.
    Langton DJ, Sprowson AP, Joyce TJ, Reed M, Carluke I, Partington P, Nargol AV. Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and Birmingham Hip Resurfacing arthroplasties. J Bone Joint Surg Br. 2009;91:1287–1295.PubMedCrossRefGoogle Scholar
  26. 26.
    Langton DJ, Sprowson AP, Mahadeva D, Bhatnagar S, Holland JP, Nargol AV. Cup anteversion in hip resurfacing: validation of EBRA and the presentation of a simple clinical grading system. J Arthroplasty. 2010;25:607–613.PubMedCrossRefGoogle Scholar
  27. 27.
    MacDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland D, Leung F. Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res. 2003;406:282–296.PubMedCrossRefGoogle Scholar
  28. 28.
    McMinn D, Treacy R, Lin K, Pynsent P. Metal on metal surface replacement of the hip: experience of the McMinn prosthesis. Clin Orthop Relat Res. 1996;329(suppl):S89–98.PubMedCrossRefGoogle Scholar
  29. 29.
    MHRA. Medical Device Alert: All metal-on-metal (MoM) hip replacements (MDA/2012/008). Accessed September 18, 2012.
  30. 30.
    Morlock MM, Bishop N, Zustin J, Hahn M, Ruther W, Amling M. Modes of implant failure after hip resurfacing: morphological and wear analysis of 267 retrieval specimens. J Bone Joint Surg Am. 2008;90(suppl 3):89–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Moroni A, Savarino L, Cadossi M, Baldini N, Giannini S. Does ion release differ between hip resurfacing and metal-on-metal THA? Clin Orthop Relat Res. 2008;466:700–707.PubMedCrossRefGoogle Scholar
  32. 32.
    Moroni A, Savarino L, Hoque M, Cadossi M, Baldini N. Do ion levels in hip resurfacing differ from metal-on-metal THA at midterm? Clin Orthop Relat Res. 2011;469:180–187.PubMedCrossRefGoogle Scholar
  33. 33.
    Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CL, Ostlere S, Athanasou N, Gill HS, Murray DW. Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 2008;90:847–851.PubMedCrossRefGoogle Scholar
  34. 34.
    Pattyn CA, Lauwagie SN, Verdonk RC. Whole blood metal ion concentrations in correlation with activity level in three different metal-on-metal bearings. J Arthroplasty. 2011;26:58–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Savarino L, Granchi D, Ciapetti G, Cenni E, Nardi Pantoli A, Rotini R, Veronesi CA, Baldini N, Giunti A. Ion release in patients with metal-on-metal hip bearings in total joint replacement: a comparison with metal-on-polyethylene bearings. J Biomed Mater Res. 2002;63:467–474.PubMedCrossRefGoogle Scholar
  36. 36.
    Schmalzried TP. Metal-metal bearing surfaces in hip arthroplasty. Orthopedics. 2009;32: pii: = 42831. doi: 10.3928/01477447-20090728-06.
  37. 37.
    Steens W, von Foerster G, Katzer A. Severe cobalt poisoning with loss of sight after ceramic-metal pairing in a hip: a case report. Acta Orthop. 2006;77:830–832.PubMedCrossRefGoogle Scholar
  38. 38.
    Tiberi JV, Pulos N, Kertzner M, Schmalzried TP. A more reliable method to assess acetabular component position. Clin Orthop Relat Res. 2012;470:471–476.PubMedCrossRefGoogle Scholar
  39. 39.
    Tower SS. Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty. A case report. J Bone Joint Surg Am. 2010;92:2847–2851.PubMedCrossRefGoogle Scholar
  40. 40.
    Underwood RJ, Zografos A, Sayles RS, Hart A, Cann P. Edge loading in metal-on-metal hips: low clearance is a new risk factor. Proc Inst Mech Eng H. 2012;226:217–226.PubMedGoogle Scholar
  41. 41.
    Vendittoli PA, Mottard S, Roy AG, Dupont C, Lavigne M. Chromium and cobalt ion release following the Durom high carbon content, forged metal-on-metal surface replacement of the hip. J Bone Joint Surg Br. 2007;89:441–448.PubMedCrossRefGoogle Scholar
  42. 42.
    Witzleb WC, Ziegler J, Krummenauer F, Neumeister V, Guenther KP. Exposure to chromium, cobalt and molybdenum from metal-on-metal total hip replacement and hip resurfacing arthroplasty. Acta Orthop. 2006;77:697–705.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2012

Authors and Affiliations

  • James P. Yoon
    • 1
  • Michel J. Le Duff
    • 1
  • Alicia J. Johnson
    • 1
  • Karren M. Takamura
    • 1
  • Edward Ebramzadeh
    • 2
  • Harlan C. Amstutz
    • 1
  1. 1.Joint Replacement Institute at St. Vincent Medical CenterLos AngelesUSA
  2. 2.J. Vernon Luck Sr. MD, Orthopaedic Research CenterOrthopaedic Hospital at UCLALos AngelesUSA

Personalised recommendations