Clinical Orthopaedics and Related Research®

, Volume 471, Issue 2, pp 519–526

What Factors Affect Posterior Dislocation Distance in THA?

  • Jim Nevelos
  • Aaron Johnson
  • Christopher Heffernan
  • James Macintyre
  • David C. Markel
  • Michael A. Mont
Symposium: Papers Presented at the Annual Meetings of The Hip Society



Dislocation remains common after total hip arthroplasty. Efforts have been made to identify and minimize risk factors. One such factor, jump distance, or the distance the femoral head must travel before dislocating, has been poorly characterized with respect to three-dimensional kinematics.


We therefore determined: (1) the three-dimensional stability of four different component designs; (2) whether the degree of abduction and anteversion affects the stability; (3) whether pelvic inclination angles affected stability; and (4) which combination of these three factors had the greatest stability.


We created a positionable three-dimensional model of a THA. Acetabular components were modeled in various abduction and anteversion angles and in two different pelvic inclinations which simulate standing and chair-rising activities.


The posterior horizontal dislocation distance increased as inclination angle and femoral head size increased. The 48-mm resurfacing typically had lower jump distances and was at risk of posterior edge loading at 30° inclination. The highest jump distance for all positions and activities occurred with the dual-mobility bearing.


These findings suggest that monoblock cups require extremely accurate positioning for low dislocation risk and that pelvic orientation may increase dislocation risks.

Clinical Relevance

As a result of the dual-mobility designs having the greatest resistance to dislocation, these cups may be appropriate for patients who are at risk for dislocation in difficult primary situations and in revision hip arthroplasty procedures in which proper component orientation may be less likely to be achieved.


  1. 1.
    Barrack RL. Dislocation after total hip arthroplasty: implant design and orientation. J Am Acad Orthop Surg. 2003;11:89–99.PubMedGoogle Scholar
  2. 2.
    Barrack RL, Butler RA, Laster DR, Andrews P. Stem design and dislocation after revision total hip arthroplasty: clinical results and computer modeling. J Arthroplasty. 2001;16:8–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartz RL, Nobel PC, Kadakia NR, Tullos HS. The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am. 2000;82:1300–1307.PubMedGoogle Scholar
  4. 4.
    Bauchu P, Bonnard O, Cypres A, Fiquet A, Girardin P, Noyer D. The dual-mobility POLARCUP: first results from a multicenter study. Orthopedics. 2008;31. pii: Scholar
  5. 5.
    Beaule PE, Harvey N, Zaragoza E, Le Duff MJ, Dorey FJ. The femoral head/neck offset and hip resurfacing. J Bone Joint Surg Br. 2007;89:9–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Beaule PE, Schmalzried TP, Udomkiat P, Amstutz HC. Jumbo femoral head for the treatment of recurrent dislocation following total hip replacement. J Bone Joint Surg Am. 2002;84:256–263.PubMedGoogle Scholar
  7. 7.
    Berry DJ. Unstable total hip arthroplasty: detailed overview. Instr Course Lect. 2001;50:265–274.PubMedGoogle Scholar
  8. 8.
    Berry DJ, von Knoch M, Schleck CD, Harmsen WS. Effect of femoral head diameter and operative approach on risk of dislocation after primary total hip arthroplasty. J Bone Joint Surg Am. 2005;87:2456–2463.PubMedCrossRefGoogle Scholar
  9. 9.
    Bouchet R, Mercier N, Saragaglia D. Posterior approach and dislocation rate: A 213 total hip replacements case-control study comparing the dual mobility cup with a conventional 28-mm metal head/polyethylene prosthesis. Orthop Traumatol Surg Res. 2011;97:2–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ. The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91:128–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Burroughs BR, Rubash HE, Harris WH. Femoral head sizes larger than 32 mm against highly cross-linked polyethylene. Clin Orthop Relat Res. 2002;405:150–157.PubMedCrossRefGoogle Scholar
  12. 12.
    Bystrom S, Espehaug B, Furnes O, Havelin LI. Femoral head size is a risk factor for total hip luxation: a study of 42,987 primary hip arthroplasties from the Norwegian Arthroplasty Register. Acta Orthop Scand. 2003;74:514–524.PubMedCrossRefGoogle Scholar
  13. 13.
    Conroy JL, Whitehouse SL, Graves SE, Pratt NL, Ryan P, Crawford RW. Risk factors for revision for early dislocation in total hip arthroplasty. J Arthroplasty. 2008;23:867–872.PubMedCrossRefGoogle Scholar
  14. 14.
    Crowninshield RD, Maloney WJ, Wentz DH, Humphrey SM, Blanchard CR. Biomechanics of large femoral heads: what they do and don’t do. Clin Orthop Relat Res. 2004;429:102–107.PubMedCrossRefGoogle Scholar
  15. 15.
    Cuckler JM, Moore KD, Lombardi AV Jr, McPherson E, Emerson R. Large versus small femoral heads in metal-on-metal total hip arthroplasty. J Arthroplasty. 2004;19:41–44.PubMedCrossRefGoogle Scholar
  16. 16.
    D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW Jr. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am. 2000;82:315–321.PubMedGoogle Scholar
  17. 17.
    De Haan R, Pattyn C, Gill HS, Murray DW, Campbell PA, De Smet K. Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg Br. 2008;90:1291–1297.PubMedCrossRefGoogle Scholar
  18. 18.
    DeWal H, Su E, DiCesare PE. Instability following total hip arthroplasty. Am J Orthop (Belle Mead NJ). 2003;32:377–382.Google Scholar
  19. 19.
    Guyen O, Pibarot V, Vaz G, Chevillotte C, Bejui-Hugues J. Use of a dual mobility socket to manage total hip arthroplasty instability. Clin Orthop Relat Res. 2009;467:465–472.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamadouche M, Biau DJ, Huten D, Musset T, Gaucher F. The use of a cemented dual mobility socket to treat recurrent dislocation. Clin Orthop Relat Res. 2010;468:3248–3254.PubMedCrossRefGoogle Scholar
  21. 21.
    Hedlundh U, Ahnfelt L, Hybbinette CH, Wallinder L, Weckstrom J, Fredin H. Dislocations and the femoral head size in primary total hip arthroplasty. Clin Orthop Relat Res. 1996;333:226–233.PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang Y, Zhang K, Die J, Shi Z, Zhao H, Wang K. A Systematic review of modern metal-on-metal total hip resurfacing vs standard total hip arthroplasty in active young patients. J Arthroplasty. 2011;26:419–426.PubMedCrossRefGoogle Scholar
  23. 23.
    Kelley SS, Lachiewicz PF, Hickman JM, Paterno SM. Relationship of femoral head and acetabular size to the prevalence of dislocation. Clin Orthop Relat Res. 1998;355:163–170.PubMedCrossRefGoogle Scholar
  24. 24.
    Kluess D, Zietz C, Lindner T, Mittelmeier W, Schmitz KP, Bader R. Limited range of motion of hip resurfacing arthroplasty due to unfavorable ratio of prosthetic head size and femoral neck diameter. Acta Orthop. 2008;79:748–754.PubMedCrossRefGoogle Scholar
  25. 25.
    Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, Karrholm J, Garellick G, Havelin LI, Furnes O, Malchau H, Lau E. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am. 2007;89(Suppl 3):144–151.PubMedCrossRefGoogle Scholar
  26. 26.
    Lautridou C, Lebel B, Burdin G, Vielpeau C. [Survival of the cementless Bousquet dual mobility cup: Minimum 15-year follow-up of 437 total hip arthroplasties] [in French]. Rev Chir Orthop Reparatrice Appar Mot. 2008;94:731–739.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee RK, Essner A, Longaray J, Wang A. Metal-on-metal bearings: the problem is edge-loading wear. Surg Technol Int. 2010;20:303–308.PubMedGoogle Scholar
  28. 28.
    Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–220.PubMedGoogle Scholar
  29. 29.
    Lombardi AV Jr, Skeels MD, Berend KR, Adams JB, Franchi OJ. Do large heads enhance stability and restore native anatomy in primary total hip arthroplasty? Clin Orthop Relat Res. 2011;469:1547–1553.PubMedCrossRefGoogle Scholar
  30. 30.
    Mak M, Jin Z, Fisher J, Stewart TD. Influence of acetabular cup rim design on the contact stress during edge loading in ceramic-on-ceramic hip prostheses. J Arthroplasty. 2011;26:131–136.PubMedCrossRefGoogle Scholar
  31. 31.
    Masonis JL, Bourne RB. Surgical approach, abductor function, and total hip arthroplasty dislocation. Clin Orthop Relat Res. 2002;405:46–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Matthies A, Underwood R, Cann P, Ilo K, Nawaz Z, Skinner J, Hart AJ. Retrieval analysis of 240 metal-on-metal hip components, comparing modular total hip replacement with hip resurfacing. J Bone Joint Surg Br. 2011;93:307–314.PubMedCrossRefGoogle Scholar
  33. 33.
    McGrory BJ, Morrey BF, Cahalan TD, An KN, Cabanela ME. Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br. 1995;77:865–869.PubMedGoogle Scholar
  34. 34.
    Morrey BF. Instability after total hip arthroplasty. Orthop Clin North Am. 1992;23:237–248.PubMedGoogle Scholar
  35. 35.
    Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003;36:577–591.PubMedCrossRefGoogle Scholar
  36. 36.
    Nikolaou V, Bergeron SG, Huk OL, Zukor DJ, Antoniou J. Evaluation of persistent pain after hip resurfacing. Bull NYU Hosp Jt Dis. 2009;67:168–172.PubMedGoogle Scholar
  37. 37.
    Peters CL, McPherson E, Jackson JD, Erickson JA. Reduction in early dislocation rate with large-diameter femoral heads in primary total hip arthroplasty. J Arthroplasty. 2007;22:140–144.PubMedCrossRefGoogle Scholar
  38. 38.
    Philippot R, Adam P, Reckhaus M, Delangle F, Verdot FX, Curvale G, Farizon F. Prevention of dislocation in total hip revision surgery using a dual mobility design. Orthop Traumatol Surg Res. 2009;95:407–413.PubMedCrossRefGoogle Scholar
  39. 39.
    Philippot R, Camilleri JP, Boyer B, Adam P, Farizon F. The use of a dual-articulation acetabular cup system to prevent dislocation after primary total hip arthroplasty: analysis of 384 cases at a mean follow-up of 15 years. Int Orthop. 2009;33:927–932.PubMedCrossRefGoogle Scholar
  40. 40.
    Robbins GM, Masri BA, Garbuz DS, Greidanus N, Duncan CP. Treatment of hip instability. Orthop Clin North Am. 2001;32:593–610, viii.Google Scholar
  41. 41.
    Sariali E, Stewart T, Jin Z, Fisher J. In vitro investigation of friction under edge-loading conditions for ceramic-on-ceramic total hip prosthesis. J Orthop Res. 2010;28:979–985.PubMedGoogle Scholar
  42. 42.
    Seyler TM, Etienne G, Plate JF, Fisher P, Mont MA. Use of modular large femoral heads without liners in hip arthroplasty. Surg Technol Int. 2006;15:217–220.PubMedGoogle Scholar
  43. 43.
    Skeels MD, Berend KR, Lombardi AV Jr. The dislocator, early and late: the role of large heads. Orthopedics. 2009;32. pii: Scholar
  44. 44.
    Smith TM, Berend KR, Lombardi AV Jr, Emerson RH Jr, Mallory TH. Metal-on-metal total hip arthroplasty with large heads may prevent early dislocation. Clin Orthop Relat Res. 2005;441:137–142.PubMedCrossRefGoogle Scholar
  45. 45.
    Stuchin SA. Anatomic diameter femoral heads in total hip arthroplasty: a preliminary report. J Bone Joint Surg Am. 2008;90(Suppl 3):52–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Tarasevicius S, Busevicius M, Robertsson O, Wingstrand H. Dual mobility cup reduces dislocation rate after arthroplasty for femoral neck fracture. BMC Musculoskelet Disord. 2010;11:175.PubMedCrossRefGoogle Scholar
  47. 47.
    Vielpeau C, Lebel B, Ardouin L, Burdin G, Lautridou C. The dual mobility socket concept: experience with 668 cases. Int Orthop. 2011;35:225–230.PubMedCrossRefGoogle Scholar
  48. 48.
    von Knoch M, Berry DJ, Harmsen WS, Morrey BF. Late dislocation after total hip arthroplasty. J Bone Joint Surg Am. 2002;84:1949–1953.Google Scholar
  49. 49.
    Walter WL, Insley GM, Walter WK, Tuke MA. Edge loading in third generation alumina ceramic-on-ceramic bearings: stripe wear. J Arthroplasty. 2004;19:402–413.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2012

Authors and Affiliations

  • Jim Nevelos
    • 1
  • Aaron Johnson
    • 3
  • Christopher Heffernan
    • 1
  • James Macintyre
    • 1
  • David C. Markel
    • 2
  • Michael A. Mont
    • 3
  1. 1.Stryker OrthopaedicsMahwahUSA
  2. 2.Providence Hospital, DMC-Providence Residency ProgramSouthfieldUSA
  3. 3.Center for Joint Preservation and Reconstruction, Rubin Institute for Advanced OrthopedicsSinai Hospital of BaltimoreBaltimoreUSA

Personalised recommendations