Clinical Orthopaedics and Related Research®

, Volume 470, Issue 12, pp 3284–3296

Hip Ontogenesis: How Evolution, Genes, and Load History Shape Hip Morphotype and Cartilotype

  • Tom Hogervorst
  • Wouter Eilander
  • Joost T. Fikkers
  • Ingrid Meulenbelt
Symposium: ABJS Carl T. Brighton Workshop on Hip Preservation Surgery

Abstract

Background

Developmental hip disorders (DHDs), eg, developmental dysplasia of the hip, slipped capitis femoris epiphysis, and femoroacetabular impingement, can be considered morphology variants of the normal hip. The femoroacetabular morphology of DHD is believed to induce osteoarthritis (OA) through local cumulative mechanical overload acting on genetically controlled patterning systems and subsequent damage of joint structures. However, it is unclear why hip morphology differs between individuals with seemingly comparable load histories and why certain hips with DHD progress to symptomatic OA whereas others do not.

Questions/Purposes

We asked (1) which mechanical factors influence growth and development of the proximal femur; and (2) which genes or genetic mechanisms are associated with hip ontogenesis.

Methods

We performed a systematic literature review of mechanical and genetic factors of hip ontogeny. We focused on three fields that in recent years have advanced our knowledge of adult hip morphology: imaging, evolution, and genetics.

Where Are We Now?

Mechanical factors can be understood in view of human evolutionary peculiarities and may summate to load histories conducive to DHD. Genetic factors most likely act through multiple genes, each with modest effect sizes. Single genes that explain a DHD are therefore unlikely to be found. Apparently, the interplay between genes and load history not only determines hip morphotype, but also joint cartilage robustness (“cartilotype”) and resistance to symptomatic OA.

Where Do We Need to Go?

We need therapies that can improve both morphotype and cartilotype.

How Do We Get There?

Better phenotyping, improving classification systems of hip morphology, and comparative population studies can be done with existing methods. Quantifying load histories likely requires new tools, but proof of principle of modifying morphotype in treatment of DDH and of cartilotype with exercise is available.

References

  1. 1.
    Agricola R, Bessems JH, Ginai AZ, Heijboer MP, van der Heijden RA, Verhaar JA, Weinans H, Waarsing JH. The development of cam-type deformity in adolescent and young male soccer players. Am J Sports Med. 2012;40:1099–1106.PubMedCrossRefGoogle Scholar
  2. 2.
    Anemone RL. The VCL hypothesis revisited: patterns of femoral morphology among quadrupedal and saltatorial prosimian primates. Am J Phys Anthropol. 1990;83:373–393.PubMedCrossRefGoogle Scholar
  3. 3.
    Back W, Schamhardt HC, Savelberg HH, van den Bogert AJ, Bruin G, Hartman W, Barneveld A. How the horse moves: 2. Significance of graphical representations of equine hind limb kinematics. Equine Vet J. 1995;27:39–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Baker JJ, Searight KJ, Atzeva Stump M, Kehrer MB, Shanafelt C, Graham E, Smith TD. Hip Anatomy and Ontogeny of Lower Limb Musculature in Three Species of Nonhuman Primates. Anatomy Research International, Hindawi Publishing Corporation; 2011. Available at: http://www.hindawi.com/journals/ari/2011/580864/. Accessed July 1, 2012.
  5. 5.
    Baker-Lepain JC, Lynch JA, Parimi N, McCulloch CE, Nevitt MC, Corr M, Lane NE. Variant alleles of the WNT antagonist FRZB are determinants of hip shape and modify the relationship between hip shape and osteoarthritis. Arthritis Rheum. 2012;64:1457–1465.PubMedCrossRefGoogle Scholar
  6. 6.
    Bardakos NV, Villar RN. Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up. J Bone Joint Surg Br. 2009;91:162–169.PubMedCrossRefGoogle Scholar
  7. 7.
    Bastow ER, Lamb KJ, Lewthwaite JC, Osborne AC, Kavanagh E, Wheeler-Jones CP, Pitsillides AA. Selective activation of the MEK-ERK pathway is regulated by mechanical stimuli in forming joints and promotes pericellular matrix formation. J Biol Chem. 2005;280:11749–11758.PubMedCrossRefGoogle Scholar
  8. 8.
    Beaule PE, Zaragoza E, Motamedi K, Copelan N, Dorey FJ. Three-dimensional computed tomography of the hip in the assessment of femoroacetabular impingement. J Orthop Res. 2005;23:1286–1292.PubMedGoogle Scholar
  9. 9.
    Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–990.PubMedCrossRefGoogle Scholar
  10. 10.
    Bergmann G, Graichen F, Rohlmann A. Hip joint forces in sheep. J Biomech. 1999;32:769–777.PubMedCrossRefGoogle Scholar
  11. 11.
    Bonneau N, Simonis C, Seringe R, Tardieu C. Study of femoral torsion during prenatal growth: interpretations associated with the effects of intrauterine pressure. Am J Phys Anthropol. 2011;145:438–445.PubMedCrossRefGoogle Scholar
  12. 12.
    Bos SD, Slagboom PE, Meulenbelt I. New insights into osteoarthritis: early developmental features of an ageing-related disease. Curr Opin Rheumatol. 2008;20:553–559.PubMedCrossRefGoogle Scholar
  13. 13.
    Browne D. Congenital Deformities of mechanical origin: section for the study of disease in children. Proc Royal Soc Med. 1936;29:1409–1431.Google Scholar
  14. 14.
    Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–786.PubMedCrossRefGoogle Scholar
  15. 15.
    Carter DR, Orr TE, Fyhrie DP, Schurman DJ. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res. 1987;219:237–250.PubMedGoogle Scholar
  16. 16.
    Daans M, Luyten FP, Lories RJ. GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes. Ann Rheum Dis. 2011;70:208–213.PubMedCrossRefGoogle Scholar
  17. 17.
    De Pellegrin M, Moharamzadeh D. Developmental dysplasia of the hip in twins: the importance of mechanical factors in the etiology of DDH. J Pediatr Orthop. 2010;30:774–778.PubMedCrossRefGoogle Scholar
  18. 18.
    Dickson JW. Pierre Le Damany on congenital dysplasia of the hip. Proc Royal Soc Med. 1969;62:575–577.Google Scholar
  19. 19.
    Doherty M, Courtney P, Doherty S, Jenkins W, Maciewicz RA, Muir K, Zhang W. Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: a case-control study. Arthritis Rheum. 2008;58:3172–3182.PubMedCrossRefGoogle Scholar
  20. 20.
    Doran DM. Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol. 1997;32:323–344.PubMedCrossRefGoogle Scholar
  21. 21.
    Drachman DB, Sokoloff L. The role of movement in embryonic joint formation. Dev Biol. 1966;14:401–420.CrossRefGoogle Scholar
  22. 22.
    Dudda M, Albers C, Mamisch TC, Werlen S, Beck M. Do normal radiographs exclude asphericity of the femoral head-neck junction? Clin Orthop Relat Res. 2009;467:651–659.PubMedCrossRefGoogle Scholar
  23. 23.
    Dudda M, Kim YJ, Zhang Y, Nevitt MC, Xu L, Niu J, Goggins J, Doherty M, Felson DT. Morphologic differences between the hips of Chinese women and white women: could they account for the ethnic difference in the prevalence of hip osteoarthritis? Arthritis Rheum. 2011;63:2992–2999.PubMedCrossRefGoogle Scholar
  24. 24.
    Ganz R, Leunig M, Leunig-Ganz K, Harris WH. The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008;466:264–272.PubMedCrossRefGoogle Scholar
  25. 25.
    Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97:33–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. J Bone Joint Surg Am. 1997;79:1489–1497.PubMedGoogle Scholar
  27. 27.
    Gosvig KK, Jacobsen S, Palm H, Sonne-Holm S, Magnusson E. A new radiological index for assessing asphericity of the femoral head in cam impingement. J Bone Joint Surg Br. 2007;89:1309–1316.PubMedCrossRefGoogle Scholar
  28. 28.
    Gosvig KK, Jacobsen S, Sonne-Holm S, Palm H, Troelsen A. Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. J Bone Joint Surg Am. 2010;92:1162–1169.PubMedCrossRefGoogle Scholar
  29. 29.
    Gregory JS, Waarsing JH, Day J, Pols HA, Reijman M, Weinans H, Aspden RM. Early identification of radiographic osteoarthritis of the hip using an active shape model to quantify changes in bone morphometric features: can hip shape tell us anything about the progression of osteoarthritis? Arthritis Rheum. 2007;56:3634–3643.PubMedCrossRefGoogle Scholar
  30. 30.
    Hack K, Di Primio G, Rakhra K, Beaule PE. Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92:2436–2444.PubMedCrossRefGoogle Scholar
  31. 31.
    Hadley NA, Brown TD, Weinstein SL. The effects of contact pressure elevations and aseptic necrosis on the long-term outcome of congenital hip dislocation. J Orthop Res. 1990;8:504–513.PubMedCrossRefGoogle Scholar
  32. 32.
    Harila V, Valkama M, Sato K, Tolleson S, Hanis S, Kau CH, Pirttiniemi P. Occlusal asymmetries in children with congenital hip dislocation. Eur J Orthod. 2012;34:307–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Harris WH. Etiology of osteoarthritis of the hip. Clin Orthop Relat Res. 1986;213:20–33.PubMedGoogle Scholar
  34. 34.
    Hartofilakidis G, Bardakos NV, Babis GC, Georgiades G. An examination of the association between different morphotypes of femoroacetabular impingement in asymptomatic subjects and the development of osteoarthritis of the hip. J Bone Joint Surg Br. 2011;93:580–586.PubMedCrossRefGoogle Scholar
  35. 35.
    Heegaard JH, Beaupre GS, Carter DR. Mechanically modulated cartilage growth may regulate joint surface morphogenesis. J Orthpo Res. 1999;17:509–517.CrossRefGoogle Scholar
  36. 36.
    Hoaglund FT, Shiba R, Newberg AH, Leung KY. Diseases of the hip. A comparative study of Japanese Oriental and American white patients. J Bone Joint Surg Am. 1985;67:1376–1383.PubMedGoogle Scholar
  37. 37.
    Inoue K, Wicart P, Kawasaki T, Huang J, Ushiyama T, Hukuda S, Courpied J. Prevalence of hip osteoarthritis and acetabular dysplasia in French and Japanese adults. Rheumatology (Oxford). 2000;39:745–748.CrossRefGoogle Scholar
  38. 38.
    Ito K, Minka MA 2nd, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br. 2001;83:171–176.PubMedCrossRefGoogle Scholar
  39. 39.
    Jazrawi LM, Alaia MJ, Chang G, Fitzgerald EF, Recht MP. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg. 2011;19:420–429.PubMedGoogle Scholar
  40. 40.
    Jouve JL, Glard Y, Garron E, Piercecchi MD, Dutour O, Tardieu C, Bollini G. Anatomical study of the proximal femur in the fetus. J Pediatr Orthop B. 2005;14:105–110.PubMedCrossRefGoogle Scholar
  41. 41.
    Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, Kingsley DM, Zelzer E. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16:734–743.PubMedCrossRefGoogle Scholar
  42. 42.
    Kavanagh E, Church VL, Osborne AC, Lamb KJ, Archer CW, Francis-West PH, Pitsillides AA. Differential regulation of GDF-5 and FGF-2/4 by immobilisation in ovo exposes distinct roles in joint formation. Dev Dyn. 2006;235:826–834.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim YH. Relationship between the sphericity of femoral head-acetabulum and the low incidence of primary osteoarthritis of the hip joint in Koreans. Yonsei Med J. 1989;30:280–287.PubMedGoogle Scholar
  44. 44.
    Laborie LB, Lehmann TG, Engesaeter IO, Eastwood DM, Engesaeter LB, Rosendahl K. Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology. 2011;260:494–502.PubMedCrossRefGoogle Scholar
  45. 45.
    Lane NE, Lin P, Christiansen L, Gore LR, Williams EN, Hochberg MC, Nevitt MC. Association of mild acetabular dysplasia with an increased risk of incident hip osteoarthritis in elderly white women: the study of osteoporotic fractures. Arthritis Rheum. 2000;43:400–404.PubMedCrossRefGoogle Scholar
  46. 46.
    Lango Allen H, Estrada K, Lettre G, Berndt SI. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–838.Google Scholar
  47. 47.
    Larsen LJ, Schottstaedt ER, Bost FC. Multiple congenital dislocations associated with characteristic facial abnormality. J Pediatr. 1950;37:574–581.PubMedCrossRefGoogle Scholar
  48. 48.
    Le Damany P. [The Congenital Hip Dislocation] [in French]. Paris, France: Masson; 1923.Google Scholar
  49. 49.
    Leunig M, Casillas MM, Hamlet M, Hersche O, Notzli H, Slongo T, Ganz R. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. Acta Orthop Scand. 2000;71:370–375.PubMedCrossRefGoogle Scholar
  50. 50.
    Loder RT. The demographics of slipped capital femoral epiphysis. An international multicenter study. Clin Orthop Relat Res. 1996;322:8–27.PubMedGoogle Scholar
  51. 51.
    Loder RT, Nechleba J, Sanders JO, Doyle P. Idiopathic slipped capital femoral epiphysis in Amish children. J Bone Joint Surg Am. 2005;87:543–549.PubMedCrossRefGoogle Scholar
  52. 52.
    Lories RJ, Peeters J, Bakker A, Tylzanowski P, Derese I, Schrooten J, Thomas JT, Luyten FP. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum. 2007;56:4095–4103.PubMedCrossRefGoogle Scholar
  53. 53.
    Loughlin J. Genetics of osteoarthritis. Curr Opin Rheumatol. 2011;23:479–483.PubMedCrossRefGoogle Scholar
  54. 54.
    Lovejoy CO, McCollum MA, Reno PL, Rosenman BA. Developmental biology and human evolution. Annu Rev Anthropol. 2003;32:85–109.CrossRefGoogle Scholar
  55. 55.
    Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE. The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthritis Cartilage. 2009;17:1313–1318.PubMedCrossRefGoogle Scholar
  56. 56.
    Meulenbelt I, Min JL, Bos S, Riyazi N, Houwing-Duistermaat JJ, van der Wijk HJ, Kroon HM, Nakajima M, Ikegawa S, Uitterlinden AG, van Meurs JB, van der Deure WM, Visser TJ, Seymour AB, Lakenberg N, van der Breggen R, Kremer D, van Duijn CM, Kloppenburg M, Loughlin J, Slagboom PE. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet. 2008;17:1867–1875.PubMedCrossRefGoogle Scholar
  57. 57.
    Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S, Ozaki K, Takigawa M, Tanaka T, Nakamura Y, Jiang Q, Ikegawa S. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet. 2007;39:529–533.PubMedCrossRefGoogle Scholar
  58. 58.
    Murray AW, Wilson NI. Changing incidence of slipped capital femoral epiphysis: a relationship with obesity? J Bone Joint Surg Br. 2008;90:92–94.PubMedGoogle Scholar
  59. 59.
    Murray RO. The aetiology of primary osteoarthritis of the hip. Br J Radiol. 1965;38:810–824.PubMedCrossRefGoogle Scholar
  60. 60.
    Murray RO, Duncan C. Athletic activity in adolescence as an etiological factor in degenerative hip disease. J Bone Joint Surg Br. 1971;53:406–419.PubMedGoogle Scholar
  61. 61.
    Myers J, Hadlow S, Lynskey T. The effectiveness of a programme for neonatal hip screening over a period of 40 years: a follow-up of the New Plymouth experience. J Bone Joint Surg Br. 2009;91:245–248.PubMedCrossRefGoogle Scholar
  62. 62.
    Nakahara I, Takao M, Sakai T, Nishii T, Yoshikawa H, Sugano N. Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res. 2011;29:333–339.PubMedCrossRefGoogle Scholar
  63. 63.
    Nguyen AR, Ling J, Gomes B, Antoniou G, Sutherland LM, Cundy PJ. Slipped capital femoral epiphysis: rising rates with obesity and aboriginality in South Australia. J Bone Joint Surg Br. 2011;93:1416–1423.PubMedCrossRefGoogle Scholar
  64. 64.
    Nicholls AS, Kiran A, Pollard TC, Hart D, Arden CP, Spector T, Gill HS, Murray DW, Carr AJ, Arden NK. The association between hip morphology parameters and 19-year risk of end-stage osteoarthritis in the hip: a nested case-control study. Arthritis Rheum. 2011.Google Scholar
  65. 65.
    Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84:556–560.PubMedCrossRefGoogle Scholar
  66. 66.
    Novacheck TF. Walking, running, and sprinting: a three-dimensional analysis of kinematics and kinetics. Instr Course Lect. 1995;44:497–506.PubMedGoogle Scholar
  67. 67.
    Nowlan NC, Prendergast PJ, Murphy P. Identification of mechanosensitive genes during embryonic bone formation. PLoS Comp Biol. 2008;4:e1000250.CrossRefGoogle Scholar
  68. 68.
    Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryo Rev. 2010;90:203–213.CrossRefGoogle Scholar
  69. 69.
    Ogden JA. Development and growth of the hip. In: Katz JF, Siffert, RS, eds. Managment of Hip Disorders in Children. Philadelphia, PA, USA: JB Lippincott; 1983:1–32.Google Scholar
  70. 70.
    Palacios J, Rodriguez JI, Ruiz A, Sanchez M, Alvarez I, DeMiguel E. Long bone development in extrinsic fetal akinesia: an experimental study in rat fetuses subjected to oligohydramnios. Teratology. 1992;46:79–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Pollard TC, Villar RN, Norton MR, Fern ED, Williams MR, Murray DW, Carr AJ. Genetic influences in the aetiology of femoroacetabular impingement: a sibling study. J Bone Joint Surg Br. 2010;92:209–216.PubMedCrossRefGoogle Scholar
  72. 72.
    Pollard TC, Villar RN, Norton MR, Fern ED, Williams MR, Simpson DJ, Murray DW, Carr AJ. Femoroacetabular impingement and classification of the cam deformity: the reference interval in normal hips. Acta Orthop. 2010;81:134–141.PubMedCrossRefGoogle Scholar
  73. 73.
    Ralis Z, McKibbin B. Changes in shape of the human hip joint during its development and their relation to its stability. J Bone Joint Surg Br. 1973;55:780–785.PubMedGoogle Scholar
  74. 74.
    Reichenbach S, Juni P, Nuesch E, Frey F, Ganz R, Leunig M. An examination chair to measure internal rotation of the hip in routine settings: a validation study. Osteoarthritis Cartilage. 2010;18:365–371.PubMedCrossRefGoogle Scholar
  75. 75.
    Reichenbach S, Juni P, Werlen S, Nuesch E, Pfirrmann CW, Trelle S, Odermatt A, Hofstetter W, Ganz R, Leunig M. Prevalence of cam-type deformity on hip magnetic resonance imaging in young males: a cross-sectional study. Arthritis Care Res (Hoboken). 2010;62:1319–1327.CrossRefGoogle Scholar
  76. 76.
    Reynard LN, Bui C, Canty-Laird EG, Young DA, Loughlin J. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet. 2011;20:3450–3460.PubMedCrossRefGoogle Scholar
  77. 77.
    Roaas A, Andersson GB. Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop Scand. 1982;53:205–208.PubMedCrossRefGoogle Scholar
  78. 78.
    Roach KE, Miles TP. Normal hip and knee active range of motion: the relationship to age. Phys Ther. 1991;71:656–665.PubMedGoogle Scholar
  79. 79.
    Roddy KA, Prendergast PJ, Murphy P. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PloS One. 2011;6:e17526.PubMedCrossRefGoogle Scholar
  80. 80.
    Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52:3507–3514.PubMedCrossRefGoogle Scholar
  81. 81.
    Sakao K, Takahashi KA, Arai Y, Saito M, Honjyo K, Hiraoka N, Kishida T, Mazda O, Imanishi J, Kubo T. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis. J Orthop Sci. o2009;14:738–747.Google Scholar
  82. 82.
    Schultz AH. The physical distinctions of man. Proc Am Phil Soc. 1950;94:428–449.Google Scholar
  83. 83.
    Schumann S, Tannast M, Nolte LP, Zheng G. Validation of statistical shape model based reconstruction of the proximal femur—a morphology study. Med Eng Phys. 2010;32:638–644.PubMedCrossRefGoogle Scholar
  84. 84.
    Shea BT. Allometry and heterochrony in the African apes. Am J Phys Anthropol. 1983;62:275–289.PubMedCrossRefGoogle Scholar
  85. 85.
    Shefelbine SJ, Carter DR. Mechanobiological predictions of growth front morphology in developmental hip dysplasia. J Orthop Res. 2004;22:346–352.PubMedCrossRefGoogle Scholar
  86. 86.
    Shi D, Dai J, Zhu P, Qin J, Zhu L, Zhu H, Zhao B, Qiu X, Xu Z, Chen D, Yi L, Ikegawa S, Jiang Q. Association of the D repeat polymorphism in the ASPN gene with developmental dysplasia of the hip: a case-control study in Han Chinese. Arthritis Res Ther. 2011;13:R27.PubMedCrossRefGoogle Scholar
  87. 87.
    Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC. The cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res. 2011;469:3229–3240.PubMedCrossRefGoogle Scholar
  88. 88.
    Smyth PP, Taylor CJ, Adams JE. Vertebral shape: automatic measurement with active shape models. Radiology. 1999;211:571–578.PubMedGoogle Scholar
  89. 89.
    Song KS, Oh CW, Lee HJ, Kim SD. Epidemiology and demographics of slipped capital femoral epiphysis in Korea: a multicenter study by the Korean Pediatric Orthopedic Society. J Pediatr Orthop. 2009;29:683–686.PubMedCrossRefGoogle Scholar
  90. 90.
    Starke A, Herzog K, Sohrt J, Haist V, Hohling A, Baumgartner W, Rehage J. Diagnostic procedures and surgical treatment of craniodorsal coxofemoral luxation in calves. Vet Surg. 2007;36:99–106.PubMedCrossRefGoogle Scholar
  91. 91.
    Stecher RM. Osteoarthritis of the hip in a gorilla; report of a third case. Clin Orthop Relat Res. 1958;12:307–314.Google Scholar
  92. 92.
    Stevenson DA, Mineau G, Kerber RA, Viskochil DH, Schaefer C, Roach JW. Familial predisposition to developmental dysplasia of the hip. J Pediatr Orthop. 2009;29:463–466.PubMedCrossRefGoogle Scholar
  93. 93.
    Takeyama A, Naito M, Shiramizu K, Kiyama T. Prevalence of femoroacetabular impingement in Asian patients with osteoarthritis of the hip. Int Orthop. 2009;33:1229–1232.PubMedCrossRefGoogle Scholar
  94. 94.
    Tannast M, Goricki D, Beck M, Murphy SB, Siebenrock KA. Hip damage occurs at the zone of femoroacetabular impingement. Clin Orthop Relat Res. 2008;466:273–280.PubMedCrossRefGoogle Scholar
  95. 95.
    Tardieu C. Short adolescence in early hominids: infantile and adolescent growth of the human femur. Am J Phys Anthropol. 1998;107:163–178.PubMedCrossRefGoogle Scholar
  96. 96.
    Tayton E. Femoral anteversion: a necessary angle or an evolutionary vestige? J Bone Joint Surg Br. 2007;89:1283–1288.PubMedCrossRefGoogle Scholar
  97. 97.
    Teer JK, Mullikin JC. Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 2010;19:R145–151.PubMedCrossRefGoogle Scholar
  98. 98.
    Tong SH, Eid MA, Chow W, To MK. Screening for developmental dysplasia of the hip in Hong Kong. J Orthop Surg (Hong Kong). 2011;19:200–203.Google Scholar
  99. 99.
    Toogood PA, Skalak A, Cooperman DR. Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res. 2009;467:876–885.PubMedCrossRefGoogle Scholar
  100. 100.
    Valdes AM, Evangelou E, Kerkhof HJ, Tamm A, Doherty SA, Kisand K, Tamm A, Kerna I, Uitterlinden A, Hofman A, Rivadeneira F, Cooper C, Dennison EM, Zhang W, Muir KR, Ioannidis JP, Wheeler M, Maciewicz RA, van Meurs JB, Arden NK, Spector TD, Doherty M. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis. 2011;70:873–875.PubMedCrossRefGoogle Scholar
  101. 101.
    Valdes AM, Spector TD. The genetic epidemiology of osteoarthritis. Curr Opin Rheumatol. 2010;22:139–143.PubMedCrossRefGoogle Scholar
  102. 102.
    Valdes AM, Spector TD, Tamm A, Kisand K, Doherty SA, Dennison EM, Mangino M, Tamm A, Kerna I, Hart DJ, Wheeler M, Cooper C, Lories RJ, Arden NK, Doherty M. Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum. 2010;62:2347–2352.PubMedCrossRefGoogle Scholar
  103. 103.
    Waarsing JH, Kloppenburg M, Slagboom PE, Kroon HM, Houwing-Duistermaat JJ, Weinans H, Meulenbelt I. Osteoarthritis susceptibility genes influence the association between hip morphology and osteoarthritis. Arthritis Rheum. 2011;63:1349–1354.PubMedCrossRefGoogle Scholar
  104. 104.
    Walker JM. Histological study of the fetal development of the human acetabulum and labrum: significance in congenital hip disease. Yale J Biol Med. 1981;54:255–263.PubMedGoogle Scholar
  105. 105.
    Walker JM, Goldsmith CH. Morphometric study of the fetal development of the human hip joint: significance for congenital hip disease. Yale J Biol Med. 1981;54:411–437.PubMedGoogle Scholar
  106. 106.
    Weinstein SL. Natural history of congenital hip dislocation (CDH) and hip dysplasia. Clin Orthop Relat Res. 1987;225:62–76.PubMedGoogle Scholar
  107. 107.
    Wiberg G. The anatomy and roentgenographic appearance of a normal hip joint. Acta Chir Scand Suppl. 1939;83:7–38.Google Scholar
  108. 108.
    Wilkinson JA. Femoral anteversion in the rabbit. J Bone Joint Surg Br. 1962;44:386–397.PubMedGoogle Scholar
  109. 109.
    Wilkinson JA. Prime factors in the etiology of congenital dislocation of the hip. J Bone Joint Surg Br. 1963;45:268–283.Google Scholar
  110. 110.
    Wolpert L. Principles of Development. Oxford, UK: Oxford University Press; 2006.Google Scholar
  111. 111.
    Yiv BC, Saidin R, Cundy PJ, Tgetgel JD, Aguilar J, McCaul KA, Keane RJ, Chan A, Scott H. Developmental dysplasia of the hip in South Australia in 1991: prevalence and risk factors. J Paediatr Child Health. 1997;33:151–156.PubMedCrossRefGoogle Scholar
  112. 112.
    Yoshimura N, Campbell L, Hashimoto T, Kinoshita H, Okayasu T, Wilman C, Coggon D, Croft P, Cooper C. Acetabular dysplasia and hip osteoarthritis in Britain and Japan. Br J Rheumatol. 1998;37:1193–1197.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2012

Authors and Affiliations

  • Tom Hogervorst
    • 1
  • Wouter Eilander
    • 2
  • Joost T. Fikkers
    • 2
  • Ingrid Meulenbelt
    • 3
  1. 1.Orthopaedic SurgeonHaga HospitalThe HagueThe Netherlands
  2. 2.Leiden University Medical CenterLeidenThe Netherlands
  3. 3.Leiden University Medical Center, The Netherlands Consortium for Healthy AgingLeidenThe Netherlands

Personalised recommendations