Advertisement

Clinical Orthopaedics and Related Research®

, Volume 470, Issue 10, pp 2874–2885 | Cite as

Osteoporosis in Children and Young Adults: A Late Effect After Chemotherapy for Bone Sarcoma

  • Ulrike Michaela Pirker-Frühauf
  • Jörg Friesenbichler
  • Ernst-Christian Urban
  • Barbara Obermayer-Pietsch
  • Andreas LeithnerEmail author
Clinical Research

Abstract

Background

Premature bone loss after childhood chemotherapy may be underestimated in patients with bone sarcoma. Methotrexate (MTX), a standard agent in osteosarcoma protocols, reportedly reduces bone mineral density (BMD). The literature, however, has reported cases of BMD reduction in patients with Ewing's sarcoma treated without MTX. Thus, it is unclear whether osteoporosis after chemotherapy relates to MTX or to other factors.

Questions/purposes

We therefore asked whether (1) young patients with a bone sarcoma had BMD reduction, (2) patients treated with MTX had lower BMD, and (3) other factors (eg, lactose intolerance or vitamin D deficiency) posed additional risks for low BMD.

Methods

We retrospectively reviewed 43 patients with malignancies who had dual-energy x-ray absorptiometry (DEXA) (lumbar, femoral); 18 with Ewing's sarcoma (mean age, 26 ± 8 years), and 25 with an osteosarcoma (mean age, 27 ± 10 years). The mean time since diagnosis was 8 ± 4 years in the group with Ewing’s sarcoma and 7 ± 5 years in the group with osteosarcoma. At last followup we determined BMD (computing z-scores), fracture rate, and lifestyle, and performed serum analysis.

Results

BMD reduction was present in 58% of patients (37% had a z-score between −1 and −2 SD, 21% had a z-score less than −2 SD) in at least one measured site. Seven of the 43 patients (16%) had nontrauma or tumor-associated fractures after chemotherapy. Findings were similar in the Ewing and osteosarcoma subgroups. We found vitamin D deficiency in 38 patients (88%) and borderline elevated bone metabolism; lactose intolerance was present in 16 patients (37%).

Conclusion

Doctors should be aware of the possibility of major bone loss after chemotherapy with a risk of pathologic fracture. Vitamin D deficiency, calcium malnutrition, and lactose intolerance may potentiate the negative effects of chemotherapy, and should be considered in long-term patient management.

Level of Evidence

Level II, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.

Keywords

Bone Mineral Density Osteoporosis Osteosarcoma Lower Bone Mineral Density Lactose Intolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Franz Quehenberger PhD, Institute of Medical Informatics, Statistics and Documentation, for statistical analysis, and Thomas Lovse MD, Karin Novotny, and Andreas Frings for their assistance.

References

  1. 1.
    Arikoski P, Komulainen J, Riikonen P, Voutilainen R, Knip M, Kröger H. Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab. 1999;84:3174–3181.PubMedCrossRefGoogle Scholar
  2. 2.
    Baroncelli GI, Bertelloni S, Sodini F, Saggese G. Osteoporosis in children and adolescents: etiology and management. Paediatr Drugs. 2005;7:295–323.PubMedCrossRefGoogle Scholar
  3. 3.
    Berger DP, Engelbrecht R, Mertelsmann R. [The Red Book - Hämatology and Internistic Onkology] [in German]. Landsberg, Germany: Hüthig Jehle Rehm GmbH; 2006.Google Scholar
  4. 4.
    Bielack S, Kempf-Bielack B, Schwenzer D, Birkfellner T, Delling G, Ewerbeck V, Exner GU, Fuchs N, Göbel U, Graf N, Heise U, Helmke K, von Hochstetter AR, Jürgens H, Maas R, Münchow N, Salzer-Kuntschik M, Treuner J, Veltmann U, Werner M, Winkelmann W, Zoubek A, Kotz R. [Neoadjuvant therapy for localized osteosarcoma of extremities; results from the Cooperative Osteosarcoma study group COSS of 925 patients] [in German]. Klin Pädiatr. 1999;211:260–270.PubMedGoogle Scholar
  5. 5.
    Bob A, Bob K. [Internal Medicine] [in German]. Stuttgart, Germany: Thieme; 2009.Google Scholar
  6. 6.
    Carrle D, Bielack SS. Current strategies of chemotherapy in osteosarcoma. Int Orthop. 2006;30:445–451.PubMedCrossRefGoogle Scholar
  7. 7.
    Dunst J, Ahrens S, Paulussen M, Rübe C, Winkelmann W, Zoubek A, Harms D, Jürgens H. Second malignancies after treatment for Ewing’s sarcoma: a report of the CESS-studies. Int J Radiat Oncol Biol Phys. 1998;42:379–384.PubMedCrossRefGoogle Scholar
  8. 8.
    Ecklund K, Laor T, Goorin AM, Connolly LP, Jaramillo D. Methothrexate osteopathy in patients with osteosarcoma. Radiology. 1997;202:543–547.PubMedGoogle Scholar
  9. 9.
    Gilsanz V. Bone density in children: a review of the available techniques and indications. Eur J Radiol. 1998;26:177–182.PubMedCrossRefGoogle Scholar
  10. 10.
    Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29:535–559.PubMedCrossRefGoogle Scholar
  11. 11.
    Gnudi S, Butturini L, Ripamonti C, Avella M, Bacci G. The effects of methotrexate (MTX) on bone: a densitometric study conducted on 59 patients with MTX administered at different doses. Ital J Orthop Traumatol. 1988;14:227–231.PubMedGoogle Scholar
  12. 12.
    Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics. 2004;20:93–99.PubMedCrossRefGoogle Scholar
  13. 13.
    Guise TA. Bone loss and fracture risk associated with cancer therapy. Oncologist. 2006;11:1121–1131.PubMedCrossRefGoogle Scholar
  14. 14.
    Herold G. [Internal Medicine] [in German]. Köln, Germany: Herold; 2008.Google Scholar
  15. 15.
    Hogendoorn PC; ESMO/EUROBONET Working Group, Athanasou N, Bielack S, De Alava E, Dei Tos AP, Ferrari S, Gelderblom H, Grimer R, Hall KS, Hassan B, Hogendoorn PC, Jurgens H, Paulussen M, Rozeman L, Taminiau AH, Whelan J, Vanel D. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(suppl 5):v204–v213.PubMedCrossRefGoogle Scholar
  16. 16.
    Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81:353–373.PubMedCrossRefGoogle Scholar
  17. 17.
    Holzer G, Krepler P, Koschat MA, Grampp S, Dominkus M, Kotz R. Bone mineral density in long-term survivors of highly malignant osteosarcoma. J Bone Joint Surg Br. 2003;85:231–237.PubMedCrossRefGoogle Scholar
  18. 18.
    Honkanen R, Pulkkinen P, Järvinen R, Kröger H, Lindstedt K, Tuppurainen M, Uusitupa M. Does lactose intolerance predispose to low bone density? A population-based study of perimenopausal Finnish women. Bone. 1996;19:23–28.PubMedCrossRefGoogle Scholar
  19. 19.
    IARC, International Agency for Research on Cancer. World Health Organization Classification of Tumours. Lyon, France: IARC Press; 2002.Google Scholar
  20. 20.
    Jackson KA, Savaiano DA. Lactose maldigestion, calcium intake and osteoporosis in African-, Asian-, and Hispanic-Americans. J Am Coll Nutr. 2001;20(2 suppl):198S–207S.PubMedGoogle Scholar
  21. 21.
    Kager L, Zoubek A, Dominkus M, Lang S, Bodmer N, Jungt G, Klingebiel T, Jürgens H, Gadner H, Bielack S; COSS Study Group. Osteosarcoma in very young children. Cancer. 2010;116:5316–5324.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaste SC. Skeletal toxicities of treatment in children with cancer. Pediatr Blood Cancer. 2008;50(2 suppl):469–473; discussion 486.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaste SC, Chesney RW, Hudson MM, Lustig RH, Rose SR, Carbone LD. Bone mineral status during and after therapy of childhood cancer: an increasing population with multiple risk factors for impaired bone health. (Comment on J Bone Miner Res. 2009;14:2002–2009). J Bone Miner Res. 1999;14:2010–2014.Google Scholar
  24. 24.
    Krall EA, Sahyoun N, Tannenbaum S, Dallal GE, Dawson-Hughes B. Effect of vitamin D intake on seasonal variations in parathyroid hormone secretion in postmenopausal women. N Engl J Med. 1989;321:1777–1783.PubMedCrossRefGoogle Scholar
  25. 25.
    Kull M, Kallikorm R, Lember M. Impact of molecularly defined hypolactasia, self-perceived milk intolerance and milk consumption on bone mineral density in a population sample in Northern Europe. Scand J Gastroenterol. 2009;44:415–421.PubMedCrossRefGoogle Scholar
  26. 26.
    Minaire P. Immobilization osteoporosis: a review. Clin Rheumatol. 1989;8(suppl 2):95–103.PubMedCrossRefGoogle Scholar
  27. 27.
    Obermayer-Pietsch BM, Bonelli CM, Walter DE, Kuhn RJ, Fahrleitner-Pammer A, Berghold A, Goessler W, Stepan V, Dobnig H, Leb G, Renner W. Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J Bone Miner Res. 2004;19:42–47.PubMedCrossRefGoogle Scholar
  28. 28.
    Ooms ME, Lips P, Roos JC, van der Vijgh WJ, Popp-Snijders C, Bezemer PD, Bouter LM. Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res. 1995;10:1177–1184.PubMedCrossRefGoogle Scholar
  29. 29.
    Outila TA, Kärkkäinen MU, Lamberg-Allardt CJ. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr. 2001;74:206–210.PubMedGoogle Scholar
  30. 30.
    Pasco JA, Henry MJ, Kotowicz MA, Sanders KM, Seeman E, Pasco JR, Schneider HG, Nicholson GC. Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study. J Bone Miner Res. 2004;19:752–758.PubMedCrossRefGoogle Scholar
  31. 31.
    Paulussen M, Craft AW, Lewis I, Hackshaw A, Douglas C, Dunst J, Schuck A, Winkelmann W, Köhler G, Poremba C, Zoubek A, Ladenstein R, van den Berg H, Hunold A, Cassoni A, Spooner D, Grimer R, Whelan J, McTiernan A, Jürgens H; European Intergroup Cooperative Ewing’s Sarcoma Study-92. Results of the EICESS-92 Study: two randomized trials of Ewing’s sarcoma treatment: cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol. 2008;26:4385–4393.PubMedCrossRefGoogle Scholar
  32. 32.
    Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 2010;205:201–210.PubMedCrossRefGoogle Scholar
  33. 33.
    Ruza E, Sierrasesúmaga L, Azcona C, Patiño-Garcia A. Bone mineral density and bone metabolism in children treated for bone sarcomas. Pediatr Res. 2006;59:866–871.PubMedCrossRefGoogle Scholar
  34. 34.
    Sala A, Barr RD. Osteopenia and cancer in children and adolescents: the fragility of success. Cancer. 2007;109:1420–1431.PubMedCrossRefGoogle Scholar
  35. 35.
    Segal E, Dvorkin L, Lavy A, Rozen GS, Yaniv I, Raz B, Tamir A, Ish-Shalom S. Bone density in axial and appendicular skeleton in patients with lactose intolerance: influence of calcium intake and vitamin D status. J Am Coll Nutr. 2003;22:201–207.PubMedGoogle Scholar
  36. 36.
    Sievänen H. Immobilization and bone structure in humans. Arch Biochem Biophys. 2010;503:146–152.PubMedCrossRefGoogle Scholar
  37. 37.
    Slemenda CW, Peacock M, Hui S, Zhou L, Johnston CC. Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J Bone Miner Res. 1997;12:676–682.PubMedCrossRefGoogle Scholar
  38. 38.
    Ueland T. Bone metabolism in relation to alterations in systemic growth hormone. Growth Horm IGF Res. 2004;14:404–417.PubMedCrossRefGoogle Scholar
  39. 39.
    Unuvar T, Buyukgebiz A. Nutritional rickets and vitamin D deficiency in infants, children and adolescents. Pediatr Endocrinol Rev. 2010;7:283–291.PubMedGoogle Scholar
  40. 40.
    van der Sluis IM, van den Heuvel-Eibrink MM. Osteoporosis in children with cancer. Pediatr Blood Cancer. 2008;50(2 suppl):474–478; discussion 486.PubMedCrossRefGoogle Scholar
  41. 41.
    Wasilewski-Masker K, Kaste SC, Hudson MM, Esiashvili N, Mattano LA, Meacham LR. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics. 2008;121:e705–e713.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2012

Authors and Affiliations

  • Ulrike Michaela Pirker-Frühauf
    • 1
  • Jörg Friesenbichler
    • 1
  • Ernst-Christian Urban
    • 2
  • Barbara Obermayer-Pietsch
    • 3
  • Andreas Leithner
    • 1
    Email author
  1. 1.Department of Orthopaedic SurgeryMedical University of GrazGrazAustria
  2. 2.Division of Paediatric Haemato-Oncology, Department of PaediatricsMedical University of GrazGrazAustria
  3. 3.Division of Endocrinology and Metabolism, Department of Internal MedicineMedical University of GrazGrazAustria

Personalised recommendations