Clinical Orthopaedics and Related Research®

, Volume 470, Issue 9, pp 2478–2487 | Cite as

Quantifying Massive Allograft Healing of the Canine Femur In Vivo and Ex Vivo: A Pilot Study

  • Brandon G. Santoni
  • Nicole Ehrhart
  • Ricardo Betancourt-Benitez
  • Christopher A. Beck
  • Edward M. Schwarz
Symposium: Allograft Research and Transplantation



Allograft integration in segmental osseous defects is unpredictable. Imaging techniques have not been applied to investigate angiogenesis and bone formation during allograft healing in a large-animal model.


We used dynamic contrast-enhanced (DCE)-MRI and cone beam (CB)-CT to quantify vascularity and bone volume in a canine femoral allograft model and determined their relationship with biomechanical testing and histomorphometry.


Femoral ostectomy was performed in three dogs and reconstructed with a 5-cm allograft and compression plate. At 0.5, 3, and 6 months, we performed DCE-MRI to quantify vascular permeability (Ktrans) and perfused fraction and CB-CT to quantify bone volume. We also performed posteuthanasia torsional testing and dynamic histomorphometry of the grafted and nonoperated femurs.


DCE-MRI confirmed the avascular nature of allograft healing (perfused fraction, 2.08%–3.25%). CB-CT demonstrated new bone formation at 3 months (26.2, 3.7, and 2.2 cm3) at the graft-host junctions, which remodeled down at 6 months (14.0, 2.2, and 2.0 cm3). The increased bone volume in one subject was confirmed with elevated Ktrans (0.22) at 3 months. CB-CT-identified remodeled bone at 6 months was corroborated by histomorphometry. Allografted femurs recovered only 40% of their strength at 6 months.


CB-CT and DCE-MRI can discriminate differences in angiogenesis and bone formation in the canine allograft model, which has potential to detect a small (32%) drug or device effect on biomechanical healing with only five animals per group.

Clinical Relevance

These radiographic tools may have the potential to assess adjuvant effects on vascular invasion and new bone formation after segmental allograft transplantation.



We thank our collaborative authors from the University of Rochester, Masahiko Takahata, MD, and Chao Xie, MD, for their assistance in the daily observations of the canine subjects and care for the animals during DCE-MRI and CB-CT; David Conover, MS, for his help running the CB-CT scanner; and Hani A. Awad, PhD, for help with the experimental design and data analyses. We also thank Synthes Inc for providing surgical equipment and implants.


  1. 1.
    Ashton EA, McShane T, Evelhoch J. Inter-operator variability in perfusion assessment of tumors in MRI using automated AIF detection. Lect Notes Comput Sci. 2005;3749:451–458.CrossRefGoogle Scholar
  2. 2.
    Berrey BH Jr, Lord CF, Gebhardt MC, Mankin HJ. Fractures of allografts: frequency, treatment, and end-results. J Bone Joint Surg Am. 1990;72:825–833.PubMedGoogle Scholar
  3. 3.
    Bos GD, Goldberg VM, Zika JM, Heiple KG, Powell AE. Immune responses of rats to frozen bone allografts. J Bone Joint Surg Am. 1983;65:239–246.PubMedGoogle Scholar
  4. 4.
    Brigman BE, Hornicek FJ, Gebhardt MC, Mankin HJ. Allografts about the knee in young patients with high-grade sarcoma. Clin Orthop Relat Res. 2004;421:232–239.PubMedCrossRefGoogle Scholar
  5. 5.
    Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983;174:28–42.PubMedGoogle Scholar
  6. 6.
    Burkus JK, Sandhu HS, Gornet MF, Longley MC. Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am. 2005;87:1205–1212.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehrhart N, Kraft S, Conover D, Rosier RN, Schwarz EM. Quantification of massive allograft healing with dynamic contrast enhanced-MRI and cone beam-CT: a pilot study. Clin Orthop Relat Res. 2008;466:1897–1904.PubMedCrossRefGoogle Scholar
  8. 8.
    Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am. 2001;83:971–986.PubMedGoogle Scholar
  9. 9.
    Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73:1123–1142.PubMedGoogle Scholar
  10. 10.
    Ernstberger T, Heidrich G, Bruening T, Krefft S, Buchhorn G, Klinger HM. The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting. Eur Spine J. 2007;16:179–185.PubMedCrossRefGoogle Scholar
  11. 11.
    Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J, Zhang X, Rubery PT, Rabinowitz J, Samulski RJ, Nakamura T, Soballe K, O’Keefe R J, Boyce BF, Schwarz EM. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med. 2005;11:291–297.PubMedCrossRefGoogle Scholar
  12. 12.
    Koefoed M, Ito H, Gromov K, Reynolds DG, Awad HA, Rubery PT, Ulrich-Vinther M, Soballe K, Guldberg RE, Lin AS, O’Keefe R J, Zhang X, Schwarz EM. Biological effects of rAAV-caAlk2 coating on structural allograft healing. Mol Ther. 2005;12:212–218.PubMedCrossRefGoogle Scholar
  13. 13.
    Looney RJ, Boyd A, Totterman S, Seo GS, Tamez-Pena J, Campbell D, Novotny L, Olcott C, Martell J, Hayes FA, O’Keefe RJ, Schwarz EM. Volumetric computerized tomography as a measurement of periprosthetic acetabular osteolysis and its correlation with wear. Arthritis Res. 2002;4:59–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection in bone allografts: incidence, nature, and treatment. J Bone Joint Surg Am. 1988;70:369–376.PubMedGoogle Scholar
  15. 15.
    Pluhar GE, Manley PA, Heiner JP, Vanderby R Jr, Seeherman HJ, Markel MD. The effect of recombinant human bone morphogenetic protein-2 on femoral reconstruction with an intercalary allograft in a dog model. J Orthop Res. 2001;19:308–317.PubMedCrossRefGoogle Scholar
  16. 16.
    Ramos-Cabrer P, van Duynhoven JP, Van der Toorn A, Nicolay K. MRI of hip prostheses using single-point methods: in vitro studies towards the artifact-free imaging of individuals with metal implants. Magn Reson Imaging. 2004;22:1097–1103.PubMedCrossRefGoogle Scholar
  17. 17.
    Reynolds DG, Hock C, Shaikh S, Jacobson J, Zhang X, Rubery PT, Beck CA, O’Keefe R J, Lerner AL, Schwarz EM, Awad HA. Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts. J Biomech. 2007;40:3178–3186.PubMedCrossRefGoogle Scholar
  18. 18.
    Reynolds DG, Shaikh S, Papuga MO, Lerner AL, O’Keefe RJ, Schwarz EM, Awad HA. μCT-based measurement of cortical bone graft-to-host union. J Bone Miner Res. 2009;24:899–907.PubMedCrossRefGoogle Scholar
  19. 19.
    Reynolds DG, Takahata M, Lerner AL, O’Keefe RJ, Schwarz EM, Awad HA. Teriparatide therapy enhances devitalized femoral allograft osseointegration and biomechanics in a murine model. Bone. 2010;48:562–570.PubMedCrossRefGoogle Scholar
  20. 20.
    Santoni BG, Ehrhart N, Turner AS, Wheeler DL. Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation. J Orthop Surg Res. 2008;3:20.PubMedCrossRefGoogle Scholar
  21. 21.
    Santoni BG, Simon Turner A, Wheeler DL, Nicholas RW, Anchordoquy TJ, Ehrhart N. Gene therapy to enhance allograft incorporation after host tissue irradiation. Clin Orthop Relat Res. 2008;466:1921–1929.PubMedCrossRefGoogle Scholar
  22. 22.
    Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res. 1996;324:66–74.PubMedCrossRefGoogle Scholar
  23. 23.
    Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM. Critical biological determinants of incorporation of non-vascularized cortical bone grafts: quantification of a complex process and structure. J Bone Joint Surg Am. 1997;79:1–16.PubMedCrossRefGoogle Scholar
  24. 24.
    Takahata M, Awad HA, O’Keefe RJ, Bukata SV, Schwarz EM. Endogenous tissue engineering: PTH therapy for skeletal repair. Cell Tissue Res. 2012;347:545–552.PubMedCrossRefGoogle Scholar
  25. 25.
    Tiyapatanaputi P, Rubery PT, Carmouche J, Schwarz EM, O’Keefe R J, Zhang X. A novel murine segmental femoral graft model. J Orthop Res. 2004;22:1254–1260.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuchida H, Hashimoto J, Crawford E, Manske P, Lou J. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res. 2003;21:44–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Weinstein RS, Parfitt AM, Marcus R, Greenwald M, Crans G, Muchmore DB. Effects of raloxifene, hormone replacement therapy, and placebo on bone turnover in postmenopausal women. Osteoporos Int. 2003;14:814–822.PubMedCrossRefGoogle Scholar
  28. 28.
    Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360:53–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Wheeler DL, Enneking WF. Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res. 2005;435:36–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Xie C, Reynolds D, Awad H, Rubery PT, Pelled G, Gazit D, Guldberg RE, Schwarz EM, O’Keefe RJ, Zhang X. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng. 2007;13:435–445.PubMedCrossRefGoogle Scholar
  31. 31.
    Yazici C, Takahata M, Reynolds DG, Xie C, Samulski RJ, Samulski J, Beecham EJ, Gertzman AA, Spilker M, Zhang X, O’Keefe RJ, Awad HA, Schwarz EM. Self-complementary AAV2.5-BMP2-coated femoral allografts mediated superior bone healing versus live autografts in mice with equivalent biomechanics to unfractured femur. Mol Ther. 2011;19:1416–1425.PubMedCrossRefGoogle Scholar
  32. 32.
    Zabka AG, Pluhar GE, Edwards RB 3rd, Manley PA, Hayashi K, Heiner JP, Kalscheur VL, Seeherman HJ, Markel MD. Histomorphometric description of allograft bone remodeling and union in a canine segmental femoral defect model: a comparison of rhBMP-2, cancellous bone graft, and absorbable collagen sponge. J Orthop Res. 2001;19:318–327.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe R J, Guldberg RE. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res. 2005;20:2124–2137.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2012

Authors and Affiliations

  • Brandon G. Santoni
    • 1
  • Nicole Ehrhart
    • 2
  • Ricardo Betancourt-Benitez
    • 3
  • Christopher A. Beck
    • 4
  • Edward M. Schwarz
    • 5
    • 6
  1. 1.Phillip Spiegel Orthopaedic Research LaboratoryFoundation for Orthopaedic Research and EducationTampaUSA
  2. 2.Department of Clinical SciencesColorado State UniversityFort CollinsUSA
  3. 3.Department of Imaging SciencesUniversity of RochesterRochesterUSA
  4. 4.Department of Biostatistics & Computational BiologyUniversity of RochesterRochesterUSA
  5. 5.Department of Biomedical EngineeringUniversity of Rochester RochesterUSA
  6. 6.The Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations