Clinical Orthopaedics and Related Research®

, Volume 470, Issue 8, pp 2302–2312

Is Helical Blade Nailing Superior to Locked Minimally Invasive Plating in Unstable Pertrochanteric Fractures?

  • Matthias Knobe
  • Wolf Drescher
  • Nicole Heussen
  • Richard Martin Sellei
  • Hans-Christoph Pape
Clinical Research



Technical advancements have produced many challenges to intramedullary implants for unstable pertrochanteric fractures. Helical blade fixation of the femoral head has the theoretical advantages of higher rotational stability and cutout resistance and should have a lower rate of reoperation than a locked plating technique.


We asked whether (1) helical blade nailing reduces the rate of reoperation within 24 months compared with locked plating and (2) any of various preoperative, intraoperative, or postoperative factors predicted failure in these two groups.


We prospectively enrolled 108 patients with unstable pertrochanteric fractures in a surgeon-allocated study between November 2005 and November 2008: 54 with percutaneous compression plates (PCCP) and 54 with proximal femoral nail antirotation (PFNA). We evaluated patients regarding reoperation, mortality, and function. Seventy-four patients had a minimum followup of 24 months (mean, 26 months; range, 24–30 months).


We found no differences in the number of reoperations attributable to mechanical problems in the two groups: PCCP = six and PFNA = five. Despite a greater incidence of postoperative lateral wall fractures with helical blade nailing, only postoperative varisation of the neck-shaft angle and tip-apex distance (33 mm versus 28 mm) predicted reoperation. Mortality and function were similar in the two groups.


Our data suggest unstable pertrochanteric fractures may be fixed either with locked extramedullary small-diameter screw systems to avoid lateral wall fractures or with the new intramedullary systems to avoid potential mechanical complications of a broken lateral wall. Tip-apex distance and preservation of the preoperative femoral neck-shaft angle are the key technical factors for prevention of reoperation.

Level of Evidence

Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.


  1. 1.
    Audigé L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop. 2003;27:197–203.PubMedCrossRefGoogle Scholar
  2. 2.
    Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ. A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Joint Surg Am. 2010;92:792–798.PubMedCrossRefGoogle Scholar
  3. 3.
    Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77:1058–1064.PubMedGoogle Scholar
  4. 4.
    Browner BD, Alberta FG, Mastella DJ. A new era in orthopedic trauma care. Surg Clin North Am. 1999;79:1431–1448.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper C, Barker DJ, Hall AJ. Evaluation of the Singh index and femoral calcar width as epidemiological methods for measuring bone mass in the femoral neck. Clin Radiol. 1986;37:123–125.PubMedCrossRefGoogle Scholar
  6. 6.
    d’Aubigné RM, Postel M. The classic: functional results of hip arthroplasty with acrylic prosthesis. 1954. Clin Orthop Relat Res. 2009;467:7–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–213.PubMedCrossRefGoogle Scholar
  8. 8.
    Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80:27–38.CrossRefGoogle Scholar
  9. 9.
    Gotfried Y. Percutaneous compression plating of intertrochanteric hip fractures. J Orthop Trauma. 2000;14:490–495.PubMedCrossRefGoogle Scholar
  10. 10.
    Gotfried Y. The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures. Clin Orthop Relat Res. 2004;425:82–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Hardy DC, Descamps PY, Krallis P, Fabeck L, Smets P, Bertens CL, Delince PE. Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures: a prospective, randomized study of one hundred patients. J Bone Joint Surg Am. 1998;80:618–630.PubMedGoogle Scholar
  12. 12.
    Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am. 1969;51:737–755.PubMedGoogle Scholar
  13. 13.
    Janzing HM, Houben BJ, Brandt SE, Chhoeurn V, Lefever S, Broos P, Reynders P, Vanderschot P. The Gotfried PerCutaneous Compression Plate versus the Dynamic Hip Screw in the treatment of pertrochanteric hip fractures: minimal invasive treatment reduces operative time and postoperative pain. J Trauma. 2002;52:293–298.PubMedCrossRefGoogle Scholar
  14. 14.
    Jones HW, Johnston P, Parker M. Are short femoral nails superior to the sliding hip screw? A meta-analysis of 24 studies involving 3,279 fractures. Int Orthop. 2006;30:69–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Knobe M, Münker R, Schmidt-Rohlfing B, Sellei RM, Schubert H, Erli HJ. [Surgical outcome in pertrochanteric femur fracture: the impact of osteoporosis. Comparison between DHS and percutaneous compression plate] [in German]. Z Orthop Unfall. 2008;146:44–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Knobe M, Münker R, Sellei RM, Schmidt-Rohlfing B, Erli HJ, Strobl CS, Niethard FU. Unstable pertrochanteric femur fractures. Failure rate, lag screw sliding and outcome with extra- and intramedullary devices (PCCP, DHS and PFN). Z Orthop Unfall. 2009;147:306–313.PubMedCrossRefGoogle Scholar
  17. 17.
    Kosygan KP, Mohan R, Newman RJ. The Gotfried percutaneous compression plate compared with the conventional classic hip screw for the fixation of intertrochanteric fractures of the hip. J Bone Joint Surg Br. 2002;84:19–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Langford J, Pillai G, Ugliailoro AD, Yang E. Perioperative lateral trochanteric wall fractures: sliding hip screw versus percutaneous compression plate for intertrochanteric hip fractures. J Orthop Trauma. 2011;25:191–195.PubMedCrossRefGoogle Scholar
  19. 19.
    Lenich A, Vester H, Nerlich M, Mayr E, Stöckle U, Füchtmeier B. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip: blade vs screw. Injury. 2010;41:1292–1296.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu Y, Tao R, Liu F, Wang Y, Zhou Z, Cao Y, Wang H. Mid-term outcomes after intramedullary fixation of peritrochanteric femoral fractures using the new proximal femoral nail antirotation (PFNA). Injury. 2010;41:810–817.PubMedCrossRefGoogle Scholar
  21. 21.
    Madsen JE, Naess L, Aune AK, Alho A, Ekeland A, Stromsoe K. Dynamic hip screw with trochanteric stabilizing plate in the treatment of unstable proximal femoral fractures: a comparative study with the Gamma nail and compression hip screw. J Orthop Trauma. 1998;12:241–248.PubMedCrossRefGoogle Scholar
  22. 22.
    Mak PH, Campbell RC, Irwin MG; American Society of Anesthesiologists. The ASA Physical Status Classification: inter-observer consistency. American Society of Anesthesiologists. Anaesth Intensive Care. 2002;30:633–640.PubMedGoogle Scholar
  23. 23.
    Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audigé L. Fracture and dislocation classification compendium - 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma. 2007;21(10 suppl):S1–S133.PubMedCrossRefGoogle Scholar
  24. 24.
    Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N. The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury. 2009;40:428–432.PubMedCrossRefGoogle Scholar
  25. 25.
    Olsson O, Ceder L, Hauggaard A. Femoral shortening in intertrochanteric fractures: a comparison between the Medoff sliding plate and the compression hip screw. J Bone Joint Surg Br. 2001;83:572–578.PubMedCrossRefGoogle Scholar
  26. 26.
    Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P; Hip Fracture Study Group. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am. 2007;89:470–475.PubMedCrossRefGoogle Scholar
  27. 27.
    Palm H, Lysén C, Krasheninnikoff M, Holck K, Jacobsen S, Gebuhr P. Intramedullary nailing appears to be superior in pertrochanteric hip fractures with a detached greater trochanter: 311 consecutive patients followed for 1 year. Acta Orthop. 2011;82:166–170.PubMedCrossRefGoogle Scholar
  28. 28.
    Panesar SS, Mirza S, Bharadwaj G, Woolf V, Ravikumar R, Athanasiou T. The percutaneous compression plate versus the dynamic hip screw: a meta-analysis. Acta Orthop Belg. 2008;74:38–48.PubMedGoogle Scholar
  29. 29.
    Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010 Sep 8;(9):CD000093.Google Scholar
  30. 30.
    Pervez H, Parker MJ, Vowler S. Prediction of fixation failure after sliding hip screw fixation. Injury. 2004;35:994–998.PubMedCrossRefGoogle Scholar
  31. 31.
    Peyser A, Weil YA, Brocke L, Sela Y, Mosheiff R, Mattan Y, Manor O, Liebergall M. A prospective, randomised study comparing the percutaneous compression plate and the compression hip screw for the treatment of intertrochanteric fractures of the hip. J Bone Joint Surg Br. 2007;89:1210–1217.PubMedCrossRefGoogle Scholar
  32. 32.
    Rudicel S, Esdaile J. The randomized clinical trial in orthopaedics: obligation or option? J Bone Joint Surg Am. 1985;67:1284–1293.Google Scholar
  33. 33.
    Schipper IB, Marti RK, van der Werken C. Unstable trochanteric femoral fractures: extramedullary or intramedullary fixation. Review of literature. Injury. 2004;35:142–151.PubMedCrossRefGoogle Scholar
  34. 34.
    Simmermacher RK, Ljungqvist J, Bail H, Hockertz T, Vochteloo AJ, Ochs U, Werken C; AO - PFNA study group. The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury. 2008;39:932–939.PubMedCrossRefGoogle Scholar
  35. 35.
    Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation. Injury. 2006;37:984–989.PubMedCrossRefGoogle Scholar
  36. 36.
    Thomas AP. Dynamic hip screws that fail. Injury. 1991;22:45–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Varela-Egocheaga JR, Iglesias-Colao R, Suárez-Suárez MA, Fernández-Villán M, González-Sastre V, Murcia-Mazón A. Minimally invasive osteosynthesis in stable trochanteric fractures: a comparative study between Gotfried percutaneous compression plate and Gamma 3 intramedullary nail. Arch Orthop Trauma Surg. 2009;129:1401–1407.PubMedCrossRefGoogle Scholar
  38. 38.
    Yaozeng X, Dechun G, Huilin Y, Guangming Z, Xianbin W. Comparative study of trochanteric fracture treated with the proximal femoral nail anti-rotation and the third generation of gamma nail. Injury. 2010;41:1234–1238.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2012

Authors and Affiliations

  • Matthias Knobe
    • 1
  • Wolf Drescher
    • 1
  • Nicole Heussen
    • 2
  • Richard Martin Sellei
    • 1
  • Hans-Christoph Pape
    • 1
  1. 1.Department of Orthopedic and Trauma Surgery, Medical FacultyRWTH Aachen UniversityAachenGermany
  2. 2.Department of Medical Statistics, Medical FacultyRWTH Aachen University AachenGermany

Personalised recommendations