Clinical Orthopaedics and Related Research®

, Volume 470, Issue 7, pp 1869–1878 | Cite as

Does Using Autograft Bone Chips Achieve Consistent Bone Ingrowth in Primary TKA?

  • Roy D. Bloebaum
  • Karyn E. Koller
  • Bettina M. Willie
  • Aaron A. Hofmann
Symposium: Retrieval Studies



Cementless fixation remains controversial in TKA due to the challenge of achieving consistent skeletal attachment. Factors predicting durable fixation are not clearly understood, but we presumed bone ingrowth could be enhanced by the quantity of host bone and application of autograft bone chips.


We asked: (1) Did the amount of bone ingrowth exceed the amount of periprosthetic and host bone with the addition of autograft bone chips? (2) Did the amount of bone ingrowth increase with implantation time? And (3) did osteolysis along the porous-coated interface and screw tracts progress with implantation time?


We measured the amount of bone in the porous-coated, periprosthetic, and host bone regions in 19 postmortem retrieved cementless primary total knee implants. The amount of bone in apposition to the implant surface, and alternatively lysed bone, was analyzed radiographically to assess the progression of osteolysis.


While bone ingrowth tended to be less than periprosthetic and host bone in all three components, it was only significantly less in the patellar component. Bone ingrowth increased in all three components over time, but progression of osteolysis did not.


Even after long-term followup, the amount of bone ingrowth did not surpass host bone levels, suggesting the amount of a patient’s host bone is a limiting factor in the amount of bone ingrowth achievable for this cementless design. It remains unknown whether compromised osteopenic bone could achieve the amount of bone attachment necessary to provide durable fixation over time.

Level of Evidence

Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.


  1. 1.
    Bischoff UW, Freeman MA, Smith D, Tuke MA, Gregson PJ. Wear induced by motion between bone and titanium or cobalt-chrome alloys. J Bone Joint Surg Br. 1994;76:713–716.PubMedGoogle Scholar
  2. 2.
    Bloebaum RD, Bachus KN, Jensen JW, Hofmann AA. Postmortem analysis of consecutively retrieved asymmetric porous-coated tibial components. J Arthroplasty. 1997;12:920–929.PubMedCrossRefGoogle Scholar
  3. 3.
    Bloebaum RD, Bachus KN, Jensen JW, Scott DF, Hofmann AA. Porous-coated metal-backed patellar components in total knee replacement. J Bone Joint Surg Am. 1998;80:518–528.PubMedGoogle Scholar
  4. 4.
    Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA. Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res. 1994;28:537–544.PubMedCrossRefGoogle Scholar
  5. 5.
    Bloebaum RD, Merrell M, Gustke K, Simmons M. Retrieval analysis of a hydroxyapatite-coated hip prosthesis. Clin Orthop Relat Res. 1991;267:97–102.PubMedGoogle Scholar
  6. 6.
    Bloebaum RD, Mihalopoulus NL, Jensen JW, Dorr LD. Postmortem analysis of bone growth into porous-coated acetabular components. J Bone Joint Surg Am. 1997;79:1013–1022.PubMedGoogle Scholar
  7. 7.
    Bloebaum RD, Rhodes DM, Rubman MH, Hofmann AA. Bilateral tibial components of different cementless designs and materials: microradiographic, backscattered imaging, and histologic analysis. Clin Orthop Relat Res. 1991;268:179–187.PubMedGoogle Scholar
  8. 8.
    Bloebaum RD, Rubman MH, Hofmann AA. Bone ingrowth into porous-coated tibial components implanted with autograft bone chips: analysis of ten consecutively retrieved implants. J Arthroplasty. 1992;7:483–493.PubMedCrossRefGoogle Scholar
  9. 9.
    Bobyn JD, Cameron HU, Abdulla D, Pilliar RM, Weatherly GC. Biologic fixation and bone modeling with an unconstrained canine total knee prosthesis. Clin Orthop Relat Res. 1982;166:301–312.PubMedGoogle Scholar
  10. 10.
    Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;150:263–270.PubMedGoogle Scholar
  11. 11.
    Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81:907–914.PubMedCrossRefGoogle Scholar
  12. 12.
    Collier JP, Colligan GA, Brown SA. Bone ingrowth into dynamically loaded porous-coated intramedullary nails. J Biomed Mater Res. 1976;10:485–492.PubMedCrossRefGoogle Scholar
  13. 13.
    Collier JP, Mayor MB, Chae JC, Surprenant VA, Surprenant HP, Dauphinais LA. Macroscopic and microscopic evidence of prosthetic fixation with porous-coated materials. Clin Orthop Relat Res. 1988;235:173–180.PubMedGoogle Scholar
  14. 14.
    Deglurkar M, Davy DT, Stewart M, Goldberg VM, Welter JF. Evaluation of machining methods for trabecular metal implants in a rabbit intramedullary osseointegration model. J Biomed Mater Res B Appl Biomater. 2007;80:528–540.PubMedGoogle Scholar
  15. 15.
    Evanich CJ, Tkach TK, von Glinski S, Camargo MP, Hofmann AA. 6- to 10-year experience using countersunk metal-backed patellas. J Arthroplasty. 1997;12:149–154.PubMedCrossRefGoogle Scholar
  16. 16.
    Galante J, Rostoker W, Lueck R, Ray RD. Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am. 1971;53:101–114.PubMedGoogle Scholar
  17. 17.
    Hofmann AA. Response of human cancellous bone to identically structured commercially pure titanium and cobalt chromium alloy porous-coated cylinders. Clin Mater. 1993;14:101–115.CrossRefGoogle Scholar
  18. 18.
    Hofmann AA, Bachus KN, Bloebaum RD. Comparative study of human cancellous bone remodeling to titanium and hydroxyapatite coated implants. J Arthroplasty. 1993;8:157–166.PubMedCrossRefGoogle Scholar
  19. 19.
    Hofmann AA, Bloebaum RD, Bachus KN. Progression of human bone ingrowth into porous-coated implants. Acta Orthop Scand. 1997;68:161–166.PubMedCrossRefGoogle Scholar
  20. 20.
    Hofmann AA, Bloebaum RD, Koller KE, Lahav A. Does Celecoxib have an adverse effect on bone remodeling and ingrowth in humans? Clin Orthop Relat Res. 2006;452:200–204.PubMedCrossRefGoogle Scholar
  21. 21.
    Hofmann AA, Bloebaum RD, Rubman MH, Bachus KN, Plaster R. Microscopic analysis of autograft bone applied at the interface of porous-coated devices in human cancellous bone. Int Orthop (SICOT). 1992;16:349–358.CrossRefGoogle Scholar
  22. 22.
    Hofmann AA, Evanich JD, Ferguson RP, Camargo MP. Ten- to 14-year clinical followup of the cementless Natural Knee system. Clin Orthop Relat Res. 2001;388:85–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Hofmann AA, Murdock LE, Wyatt RW, Alpert JP. Total knee arthroplasty: two- to four-year experience using an asymmetric tibial tray and a deep trochlear-grooved femoral component. Clin Orthop Relat Res. 1991;269:78–88.PubMedGoogle Scholar
  24. 24.
    Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of The Knee Society Rating System. Clin Orthop Relat Res. 1989;248:13–14.PubMedGoogle Scholar
  25. 25.
    Jasty M, Bragdon CR, Haire T, Mulroy RD Jr, Harris WH. Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components. J Biomed Mater Res. 1993;27:639–644.PubMedCrossRefGoogle Scholar
  26. 26.
    La Budde JK, Orosz JF, Bonfiglio TA, Pellegrini VD Jr. Particulate titanium and cobalt-chrome metallic debris in failed total knee arthroplasty: a quantitative histologic analysis. J Arthroplasty. 1994;9:291–304.PubMedCrossRefGoogle Scholar
  27. 27.
    Nafei A, Nielsen S, Kristensen O, Hvid I. The press-fit Kinemax knee arthroplasty: high failure rate of non-cemented implants. J Bone Joint Surg Br. 1992;74:243–246.PubMedGoogle Scholar
  28. 28.
    Ranawat CS, Flynn WF Jr, Saddler S, Hansraj KK, Maynard MJ. Long-term results of the total condylar knee arthroplasty: a 15-year survivorship study. Clin Orthop Relat Res. 1993;286:94–102.PubMedGoogle Scholar
  29. 29.
    Sumner DR, Bryan JM, Urban RM, Kuszak JR. Measuring the volume fraction of bone ingrowth: a comparison of three techniques. J Orthop Res. 1990;8:448–452.PubMedCrossRefGoogle Scholar
  30. 30.
    Whiteside LA. Long-term followup of the bone-ingrowth Ortholoc knee system without a metal-backed patella. Clin Orthop Relat Res. 2001;388:77–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Willie BM, Bloebaum RD, Bireley WR, Bachus KN, Hofmann AA. Determining relevance of a weight-bearing ovine model for bone ingrowth assessment. J Biomed Mater Res A. 2004;69:567–576.PubMedCrossRefGoogle Scholar
  32. 32.
    Wright TM, Rimnac CM, Stulberg SD, Mintz L, Tsao AK, Klein RW, McCrae C. Wear of polyethylene in total joint replacements: observations from retrieved PCA knee implants. Clin Orthop Relat Res. 1992;276:126–134.PubMedGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2011

Authors and Affiliations

  • Roy D. Bloebaum
    • 1
    • 2
  • Karyn E. Koller
    • 1
  • Bettina M. Willie
    • 3
  • Aaron A. Hofmann
    • 1
    • 2
  1. 1.Bone and Joint Research Laboratory (151F), Department of Veterans Affairs Salt Lake City Health Care SystemSalt Lake CityUSA
  2. 2.Department of OrthopaedicsUniversity of Utah School of MedicineSalt Lake CityUSA
  3. 3.Julius Wolff InstitutCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations