Clinical Orthopaedics and Related Research®

, Volume 470, Issue 7, pp 1834–1846 | Cite as

Which Radiographic Parameters Are Linked to Failure of a Dynamic Spinal Implant?

  • Eike HoffEmail author
  • Patrick Strube
  • Antonius Rohlmann
  • Christian Groß
  • Michael Putzier
Symposium: Retrieval Studies



Knowledge about factors leading to failure of posterior dynamic stabilization implants is essential to design future implants and establish surgical indications. Therefore, we analyzed an implant for single-level or hybrid configuration (adjacent to spondylodesis), which was recalled due to high failure rates.


We asked: (1) Were postoperative radiographic changes linked to implant failure? (2) Were radiographic parameters different between the two configurations? And (3) was implant failure related to inferior clinical scores?


The implant was used in 18 patients with lumbar single-level spinal stenosis or with (recurrent) disc herniation and concurrent degenerative disc disease and in 22 patients with an initially degenerated segment adjacent and superior to a fusion site. We prospectively obtained preoperative and postoperative (immediate, 6-, 12- and 24-month) clinical and radiographic evaluations; 37 of the 40 patients completed the 24-month followup. Using plain and extension-flexion radiographs, we compared implant failure rates and their association with postoperative implant translation, anterior and posterior disc height, and ROM for each configuration and between configurations. We assessed associations between clinical scores (VAS pain scores for back and leg, Oswestry Disability Index) and implant failure.


Implant failure occurred in 10 of the 37 implants and corresponded to greater posterior disc height (single-level only) and implant translation. Adjacent-segment ROM increases and posterior disc height decreases over time were greater with the hybrid configuration. Implant failure rate related to higher Oswestry Disability Index (single-level only) and higher back pain scores.


Implant translation is associated with failure likely due to insufficient resistance to shear forces. Load transfer may cause progressive degeneration in the dynamic and adjacent segments, especially in the hybrid configuration.

Level of Evidence

Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.


Oswestry Disability Index Adjacent Segment Degenerative Disc Disease Posterior Lumbar Interbody Fusion Lordotic Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Cameron J. Wilson for proofreading and language checking of the article. Authors Eike Hoff and Patrick Strube have contributed equally to this work.


  1. 1.
    Bono CM, Kadaba M, Vaccaro AR. Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech. 2009;22:376–383.PubMedCrossRefGoogle Scholar
  2. 2.
    Bordes-Monmeneu M, Bordes-Garcia V, Rodrigo-Baeza F, Saez D. [System of dynamic neutralization in the lumbar spine: experience on 94 cases] [in Spanish]. Neurocirugia (Asturias, Spain). 2005;16:499–506.Google Scholar
  3. 3.
    Bothmann M, Kast E, Boldt GJ, Oberle J. Dynesys fixation for lumbar spine degeneration. Neurosurg Rev. 2008;31:189–196.PubMedCrossRefGoogle Scholar
  4. 4.
    Cho KJ, Suk SI, Park SR, Kim JH, Kim SS, Choi WK, Lee KY, Lee SR. Complications in posterior fusion and instrumentation for degenerative lumbar scoliosis. Spine (Phila Pa 1976). 2007;32:2232–2237. CrossRefGoogle Scholar
  5. 5.
    Chou WY, Hsu CJ, Chang WN, Wong CY. Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Arch Orthop Trauma Surg. 2002;122:39–43.PubMedGoogle Scholar
  6. 6.
    Chow DH, Luk KD, Evans JH, Leong JC. Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976). 1996;21:549–555.CrossRefGoogle Scholar
  7. 7.
    Delamarter RB, Maxwell J, Davis R, Sherman J, Welch W. Nonfusion application of the Dynesys system in the lumbar spine: early results from the IDE Multicenter Trial. Spine J. 2006;6(suppl):77S.CrossRefGoogle Scholar
  8. 8.
    Dupuis PR, Yong-Hing K, Cassidy JD, Kirkaldy-Willis WH. Radiologic diagnosis of degenerative lumbar spinal instability. Spine (Phila Pa 1976). 1985;10:262–276.CrossRefGoogle Scholar
  9. 9.
    Fairbank TC, Pynsent PB. The Oswestry Disability Index. Spine (Phila Pa 1976). 2000;25:2940–2952.CrossRefGoogle Scholar
  10. 10.
    Fujiwara A, Tamai K, Yamato M, An HS, Yoshida H, Saotome K, Kurihashi A. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur Spine J. 1999;8:396–401.PubMedCrossRefGoogle Scholar
  11. 11.
    Gerbershagen HU, Lindena G, Korb J, Kramer S. Health-related quality of life in patients with chronic pain in German. Schmerz (Berlin, Germany). 2002;16:271–284.CrossRefGoogle Scholar
  12. 12.
    Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG. Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am. 2004;86:1497–1503.PubMedGoogle Scholar
  13. 13.
    Grevitt MP, Gardner AD, Spilsbury J, Shackleford IM, Baskerville R, Pursell LM, Hassaan A, Mulholland RC. The Graf stabilisation system: early results in 50 patients. Eur Spine J. 1995;4:169–175; discussion 135.PubMedCrossRefGoogle Scholar
  14. 14.
    Grob D, Benini A, Junge A, Mannion AF. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976). 2005;30:324–331.CrossRefGoogle Scholar
  15. 15.
    Ha KY, Schendel MJ, Lewis JL, Ogilvie JW. Effect of immobilization and configuration on lumbar adjacent-segment biomechanics. J Spinal Disord. 1993;6:99–105.PubMedCrossRefGoogle Scholar
  16. 16.
    Hadlow SV, Fagan AB, Hillier TM, Fraser RD. The Graf ligamentoplasty procedure: comparison with posterolateral fusion in the management of low back pain. Spine (Phila Pa 1976). 1998;23:1172–1179.CrossRefGoogle Scholar
  17. 17.
    Hambly MF, Wiltse LL, Raghavan N, Schneiderman G, Koenig C. The transition zone above a lumbosacral fusion. Spine (Phila Pa 1976). 1998;23:1785–1792. CrossRefGoogle Scholar
  18. 18.
    Kanayama M, Hashimoto T, Shigenobu K, Togawa D, Oha F. A minimum 10-year follow-up of posterior dynamic stabilization using Graf artificial ligament. Spine (Phila Pa 1976). 2007;32:1992–1996; discussion 1997.CrossRefGoogle Scholar
  19. 19.
    Kaner T, Sasani M, Oktenoglu T, Cosar M, Ozer AF. Utilizing dynamic rods with dynamic screws in the surgical treatment of chronic instability: a prospective clinical study. Turk Neurosurg. 2009;19:319–326.PubMedGoogle Scholar
  20. 20.
    Kaner T, Sasani M, Oktenoglu T, Ozer AF. Dynamic stabilization of the spine: a new classification system. Turk Neurosurg. 2010;20:205–215.PubMedGoogle Scholar
  21. 21.
    Kumar MN, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J. 2001;10:314–319.PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar MN, Jacquot F, Hall H. Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J. 2001;10:309–313.PubMedCrossRefGoogle Scholar
  23. 23.
    Leone A, Cassar-Pullicino VN, Guglielmi G, Bonomo L. Degenerative lumbar intervertebral instability: what is it and how does imaging contribute? Skeletal Radiol. 2009;38:529–533.PubMedCrossRefGoogle Scholar
  24. 24.
    Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology. 2007;245:62–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Maleci A, Sambale RD, Schiavone M, Lamp F, Ozer F, von Strempel A. Nonfusion stabilization of the degenerative lumbar spine. J Neurosurg Spine. 2011;15:151–158.PubMedCrossRefGoogle Scholar
  26. 26.
    Maserati MB, Tormenti MJ, Panczykowski DM, Bonfield CM, Gerszten PC. The use of a hybrid dynamic stabilization and fusion system in the lumbar spine: preliminary experience. Neurosurg Focus. 2010;28:E2.PubMedCrossRefGoogle Scholar
  27. 27.
    Meyerding HW. Spondylolisthesis. J Bone Joint Surg Br. 1931;13:39–48.Google Scholar
  28. 28.
    Miyakoshi N, Abe E, Shimada Y, Okuyama K, Suzuki T, Sato K. Outcome of one-level posterior lumbar interbody fusion for spondylolisthesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine (Phila Pa 1976). 2000;25:1837–1842.CrossRefGoogle Scholar
  29. 29.
    Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–199.PubMedGoogle Scholar
  30. 30.
    Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J. 2006;15:913–922.PubMedCrossRefGoogle Scholar
  31. 31.
    Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976). 2004;29:1938–1944.CrossRefGoogle Scholar
  32. 32.
    Penta M, Sandhu A, Fraser RD. Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976). 1995;20:743–747.CrossRefGoogle Scholar
  33. 33.
    Pihlajamaki H, Bostman O, Ruuskanen M, Myllynen P, Kinnunen J, Karaharju E. Posterolateral lumbosacral fusion with transpedicular fixation: 63 consecutive cases followed for 4 (2–6) years. Acta Orthop Scand. 1996;67:63–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Plev D, Sutcliffe JC. Outcome and complications using a dynamic neutralization and stabilization pedicle screw system (DYNESYS): is this a “soft fusion”? Spine J. 2005;5:S141–S142.CrossRefGoogle Scholar
  35. 35.
    Putzier M, Hoff E, Tohtz S, Gross C, Perka C, Strube P. Dynamic stabilization adjacent to single-level fusion. Part II. No clinical benefit for asymptomatic, initially degenerated adjacent segments after 6 years follow-up. Eur Spine J. 2010;19:2181–2189.PubMedCrossRefGoogle Scholar
  36. 36.
    Putzier M, Schneider SV, Funk J, Perka C. [Application of a dynamic pedicle screw system (DYNESYS) for lumbar segmental degenerations—comparison of clinical and radiological results for different indications] [in German]. Z Orthop Ihre Grenzgeb. 2004;142:166–173.PubMedCrossRefGoogle Scholar
  37. 37.
    Putzier M, Schneider SV, Funk JF, Tohtz SW, Perka C. The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine (Phila Pa 1976). 2005;30:E109–E114.CrossRefGoogle Scholar
  38. 38.
    Rahm MD, Hall BB. Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study. J Spinal Disord. 1996;9:392–400.PubMedCrossRefGoogle Scholar
  39. 39.
    Rohlmann A, Burra NK, Zander T, Bergmann G. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J. 2007;16:1223–1231.PubMedCrossRefGoogle Scholar
  40. 40.
    Rohlmann A, Nabil Boustani H, Bergmann G, Zander T. Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics: a probabilistic finite element study with subsequent sensitivity analysis. J Biomech. 2010;43:2963–2969.PubMedCrossRefGoogle Scholar
  41. 41.
    Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech. 2006;39:2484–2490.PubMedCrossRefGoogle Scholar
  42. 42.
    Ruberte LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments—a finite element model study. J Biomech. 2009;42:341–348.PubMedCrossRefGoogle Scholar
  43. 43.
    Saxler G, Wedemeyer C, von Knoch M, Render UM, Quint U. [Follow-up study after dynamic and static stabilisation of the lumbar spine] [in German]. Z Orthop Ihre Grenzgeb. 2005;143:92–99.PubMedCrossRefGoogle Scholar
  44. 44.
    Schaeren S, Broger I, Jeanneret B. Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine (Phila Pa 1976). 2008;33:E636–E642.CrossRefGoogle Scholar
  45. 45.
    Schilling C, Kruger S, Grupp TM, Duda GN, Blomer W, Rohlmann A. The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study. Eur Spine J. 2011;20:297–307.PubMedCrossRefGoogle Scholar
  46. 46.
    Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine (Phila Pa 1976). 1996;21:970–981.CrossRefGoogle Scholar
  47. 47.
    Schmidt H, Heuer F, Wilke HJ. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? J Biomech. 2009;42:48–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Schnake KJ, Schaeren S, Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976). 2006;31:442–449.CrossRefGoogle Scholar
  49. 49.
    Sengupta DK. Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am. 2004;35:43–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Stoffel M, Behr M, Reinke A, Stuer C, Ringel F, Meyer B. Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic-system: a prospective observation. Acta Neurochir (Wien). 2010;152:835–843.CrossRefGoogle Scholar
  51. 51.
    Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J. 2002;11(suppl 2):S170–S178.PubMedGoogle Scholar
  52. 52.
    Strube P, Tohtz S, Hoff E, Gross C, Perka C, Putzier M. Dynamic stabilization adjacent to single-level fusion. Part I. Biomechanical effects on lumbar spinal motion. Eur Spine J. 2010;19:2171–2180.PubMedCrossRefGoogle Scholar
  53. 53.
    Wurgler-Hauri CC, Kalbarczyk A, Wiesli M, Landolt H, Fandino J. Dynamic neutralization of the lumbar spine after microsurgical decompression in acquired lumbar spinal stenosis and segmental instability. Spine (Phila Pa 1976). 2008;33:E66–E72.CrossRefGoogle Scholar
  54. 54.
    Zander T, Rohlmann A, Burra NK, Bergmann G. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clin Biomech (Bristol, Avon). 2006;21:767–774.CrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2011

Authors and Affiliations

  • Eike Hoff
    • 1
    • 2
    Email author
  • Patrick Strube
    • 1
    • 2
  • Antonius Rohlmann
    • 1
  • Christian Groß
    • 1
  • Michael Putzier
    • 1
  1. 1.Center for Musculoskeletal Surgery and Julius Wolff Institute, Klinik für Orthopädie–Charité Campus MitteCharité–Universitätsmedizin BerlinBerlinGermany
  2. 2.Berlin-Brandenburg Center for Regenerative MedicineCharité–Universitätsmedizin BerlinBerlinGermany

Personalised recommendations