Clinical Orthopaedics and Related Research®

, Volume 470, Issue 2, pp 357–365

The Otto Aufranc Award: Demineralized Bone Matrix Around Porous Implants Promotes Rapid Gap Healing and Bone Ingrowth

  • Letitia Lim
  • J. Dennis Bobyn
  • Kristian M. Bobyn
  • Louis-Philippe Lefebvre
  • Michael Tanzer
Symposium: Papers Presented at the Annual Meetings of The Hip Society

Abstract

Background

Noncemented revision arthroplasty is often complicated by the presence of bone implant gaps that reduce initial stability and biologic fixation. Demineralized bone matrix has osteoinductive properties and therefore the potential to enhance gap healing and porous implant fixation.

Questions/purposes

We determined at what times and to what extent demineralized bone matrix promotes gap healing and bone ingrowth around a porous implant.

Methods

We inserted porous titanium implants into the proximal metaphyses of canine femora and humeri, with an initial 3-mm gap between host cancellous bone and implants. We left the gaps empty (control; n = 12) or filled them with either demineralized bone matrix (n = 6) or devitalized demineralized bone matrix (negative control; n = 6) and left them in situ for 4 or 12 weeks. We quantified volume healing of the gap with new bone using three-dimensional micro-CT scanning and quantified apposition and ingrowth using backscattered scanning electron microscopy.

Results

The density of bone inside gaps filled with demineralized bone matrix reached 64% and 93% of surrounding bone density by 4 and 12 weeks, respectively. Compared with empty controls and negative controls at 4 and 12 weeks, gap healing using demineralized bone matrix was two to three times greater and bone ingrowth and apposition were up to 15 times greater.

Conclusions

Demineralized bone matrix promotes rapid bone ingrowth and gap healing around porous implants.

Clinical Relevance

Demineralized bone matrix has potential for enhancing implant fixation in revision arthroplasty.

References

  1. 1.
    Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84:716–720.PubMedCrossRefGoogle Scholar
  2. 2.
    Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB. Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg Am. 2010;92:427–435.PubMedCrossRefGoogle Scholar
  3. 3.
    Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine (Phila Pa 1976). 2006;31:1299–1306; discussion 1307–1308.Google Scholar
  4. 4.
    Barrack RL, Cook SD, Patrón LP, Salkeld SL, Szuszczewicz E, Whitecloud TS 3rd. Induction of bone ingrowth from acetabular defects to a porous surface with OP-1. Clin Orthop Relat Res. 2003;417:41–49.PubMedGoogle Scholar
  5. 5.
    Bobyn JD. Next generation porous metals for biologic fixation. In: Glassman AH, Lachiewicz PF, Tanzer, M, eds. Orthopaedic Knowledge Update: Hip and Knee Reconstruction 4. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2011:45–58.Google Scholar
  6. 6.
    Boyan BD, Sylvia VL, Liu Y, Sagun R, Cochran DL, Lohmann CH, Dean DD, Schwartz Z. Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials. 1999;20:2305–2310.PubMedCrossRefGoogle Scholar
  7. 7.
    Cook SD, Salkeld SL, Patron LP, Barrack RL. The effect of demineralized bone matrix gel on bone ingrowth and fixation of porous implants. J Arthroplasty. 2002;17:402–408.PubMedCrossRefGoogle Scholar
  8. 8.
    Efe T, Schmitt J. Analyses of prosthesis stem failures in noncemented modular hip revision prostheses. J Arthroplasty. 2011;26:665.e7–665.e12.CrossRefGoogle Scholar
  9. 9.
    Einhorn TA, Lane JM, Burstein AH, Kopman CR, Vigorita VJ. The healing of segmental bone defects induced by demineralized bone matrix: a radiographic and biomechanical study. J Bone Joint Surg Am. 1984;66:274–279.PubMedGoogle Scholar
  10. 10.
    Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84:454–464.PubMedGoogle Scholar
  11. 11.
    Gamradt SC, Lieberman JR. Bone graft for revision hip arthroplasty: biology and future applications. Clin Orthop Relat Res. 2003;417:183–194.PubMedGoogle Scholar
  12. 12.
    Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg. 1995;3:1–8.PubMedGoogle Scholar
  13. 13.
    Greis PE, Kang JD, Silvaggio V, Rubash HE. A long-term study on defect filling and bone ingrowth using a canine fiber metal total hip model. Clin Orthop Relat Res. 1992;274:47–59.PubMedGoogle Scholar
  14. 14.
    Gross AE, Duncan CP, Garbuz D, Mohamed EM. Revision arthroplasty of the acetabulum in association with loss of bone stock. Instr Course Lect. 1999;48:57–66.PubMedGoogle Scholar
  15. 15.
    Hacking SA, Harvey EJ, Tanzer M, Krygier JJ, Bobyn JD. Acid etched microtexture for enhancement of bone growth into porous coated implants. J Bone Joint Surg Br. 2003;85:1182–1189.PubMedCrossRefGoogle Scholar
  16. 16.
    Hacking SA, Tanzer M, Harvey EJ, Krygier JJ, Bobyn JD. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin Orthop Relat Res. 2002;405:24–38.PubMedCrossRefGoogle Scholar
  17. 17.
    Jafari SM, Bender B, Coyle C, Parvizi J, Sharkey PF, Hozack WJ. Do tantalum and titanium cups show similar results in revision hip arthroplasty? Clin Orthop Relat Res. 2010;468:459–465.PubMedCrossRefGoogle Scholar
  18. 18.
    Jensen TB, Overgaard S, Lind M, Rahbeck O, Bünger C, Søballe K. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs. J Bone Joint Surg Br. 2007;89:121–126.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28:2491–2504.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson EE, Urist MR, Finerman GA. Resistant nonunions and partial or complete segmental defects of long bones: treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed, antigen-extracted, allogeneic (AAA) bone. Clin Orthop Relat Res. 1992;277:229–237.PubMedGoogle Scholar
  21. 21.
    Kakiuchi M, Hosoya T, Takaoka K, Amitani K, Ono K. Human bone matrix gelatin as a clinical alloimplant: a retrospective review of 160 cases. Int Orthop. 1985;9:181–188.PubMedCrossRefGoogle Scholar
  22. 22.
    Kang JD, McKernan DJ, Kruger M, Mutschler T, Thompson WH, Rubash HE. Ingrowth and formation of bone in defects in an uncemented fiber-metal total hip-replacement model in dogs. J Bone Joint Surg Am. 1991;73:93–105.PubMedGoogle Scholar
  23. 23.
    Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res. 1996;32:55–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Kosashvili Y, Safir O, Backstein D, Lakstein D, Gross AE. Salvage of failed acetabular cages by nonbuttressed trabecular metal cups. Clin Orthop Relat Res. 2010;468:466–471.PubMedCrossRefGoogle Scholar
  25. 25.
    Lakstein D, Kosashvili Y, Backstein D, Safir O, Lee P, Gross AE. Revision total hip arthroplasty with a modular tapered stem. Hip Int. 2010;20:136–142.PubMedGoogle Scholar
  26. 26.
    Maruyama M, Terayama K, Ito M, Takei T, Kitagawa E. Hydroxyapatite clay for gap filling and adequate bone ingrowth. J Biomed Mater Res. 1995;29:329–336.PubMedCrossRefGoogle Scholar
  27. 27.
    Nehme A, Lewallen DG, Hanssen AD. Modular porous metal augments for treatment of severe acetabular bone loss during revision hip arthroplasty. Clin Orthop Relat Res. 2004;429:201–208.PubMedCrossRefGoogle Scholar
  28. 28.
    Oakes DA, Lee CC, Lieberman JR. An evaluation of demineralized bone matrices in a rat femoral defect model. Clin Orthop Relat Res. 2003;413:281–290.PubMedCrossRefGoogle Scholar
  29. 29.
    Ramappa M, Bajwa A, Kulkarni A, McMurtry I, Port A. Early results of a new highly porous modular acetabular cup in revision arthroplasty. Hip Int. 2009;19:239–244.PubMedGoogle Scholar
  30. 30.
    Sampath TK, Reddi AH. Dissociative extraction and reconstitution of bone matrix components involved in local bone differentiation. Proc Natl Acad Sci U S A. 1981;78:7599–7603.PubMedCrossRefGoogle Scholar
  31. 31.
    Schwartz Z, Mellonig JT, Carnes DL Jr, Dean DD, Cochran DL, Boyan BD. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol. 1996;67:918–926.PubMedGoogle Scholar
  32. 32.
    Shen WJ, Chung KC, Wang GJ, Balian G, McLaughlin RE. Demineralized bone matrix in the stabilization of porous-coated implants in bone defects in rabbits. Clin Orthop Relat Res. 1993;293:346–352.PubMedGoogle Scholar
  33. 33.
    Shih HN, Shih LY, Sung TH, Chang YC. Restoration of bone defect and enhancement of bone ingrowth using partially demineralized bone matrix and marrow stromal cells. J Orthop Res. 2005;23:1293–1299.PubMedGoogle Scholar
  34. 34.
    Sumner DR, Turner TM, Urban RM, Turek T, Seeherman H, Wozney JM. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model. J Orthop Res. 2004;22:58–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Sumner DR, Turner TM, Urban RM, Virdi AS, Inoue N. Additive enhancement of implant fixation following combined treatment with rhTGF-beta2 and rhBMP-2 in a canine model. J Bone Joint Surg Am. 2006;88:806–817.PubMedCrossRefGoogle Scholar
  36. 36.
    Tiedeman JJ, Connolly JF, Strates BS, Lippiello L. Treatment of nonunion by percutaneous injection of bone marrow and demineralised bone matrix—an experimental study in dogs. Clin Orthop Relat Res. 1991;268:294–302.PubMedGoogle Scholar
  37. 37.
    Wang J, Glimcher MJ. Characterization of matrix induced osteogenesis in rat calvarial bone defects: II. Origins of bone-forming cells. Calcif Tissue Int. 1999;65:486–493.PubMedCrossRefGoogle Scholar
  38. 38.
    Wazen RM, Lefebvre LP, Baril E, Nanci A. Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater. 2010;94:64–71.PubMedGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2011

Authors and Affiliations

  • Letitia Lim
    • 1
    • 2
  • J. Dennis Bobyn
    • 1
    • 2
  • Kristian M. Bobyn
    • 1
    • 2
  • Louis-Philippe Lefebvre
    • 3
  • Michael Tanzer
    • 1
    • 2
  1. 1.Division of Orthopaedic Surgery, Faculty of MedicineMcGill UniversityMontrealCanada
  2. 2.Jo Miller Orthopaedic Research LaboratoryMontreal General HospitalMontrealCanada
  3. 3.National Research Council CanadaBouchervilleCanada

Personalised recommendations