Clinical Orthopaedics and Related Research®

, Volume 470, Issue 1, pp 291–298

The Effect of Long-term Alendronate Treatment on Cortical Thickness of the Proximal Femur

  • Aasis Unnanuntana
  • Kashif Ashfaq
  • Quang V. Ton
  • John P. Kleimeyer
  • Joseph M. Lane
Clinical Research

Abstract

Background

One of the radiographic hallmarks in patients with atypical femoral insufficiency fractures after prolonged bisphosphonate treatment is generalized cortical hypertrophy. Whether cortical thickening in the proximal femur is caused by long-term alendronate therapy, however, remains unknown.

Questions/purposes

We asked whether long-term alendronate use of 5 years or more results in progressive thickening of the subtrochanteric femoral cortices.

Patients and Methods

We retrospectively evaluated changes in cortical thickness and cortical thickness ratio (ratio of cortical to femoral shaft diameter) at the subtrochanteric region of the proximal femur in baseline and latest hip dual-energy xray absorptiometry (DXA) scans of 131 patients. The mean followup was 7.3 years. Patients were divided into two groups: control (no history of alendronate, 45 patients) and alendronate (history of alendronate ≥ 5 years, 86 patients). We determined cortical thickness and cortical thickness ratio at 3.5 and 4.0 cm below the tip of the greater trochanter, representing the subtrochanteric region.

Results

After a minimum of 5 years followup, mean cortical thickness decreased approximately 3% in the alendronate and control groups. The cortical thickness at the subtrochanteric femoral region changed less than 1 mm in greater than 90% of the patients with long-term alendronate treatment. We observed no differences in mean changes of cortical thickness and percent changes of cortical thickness between the two groups.

Conclusions

Long-term alendronate treatment did not appear to cause thickened femoral cortices within the detection limits of our method. This finding contrasts with the notion that long-term alendronate treatment leads to generalized cortical thickening.

Level of Evidence

Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

References

  1. 1.
    Armamento-Villareal R, Napoli N, Diemer K, Watkins M, Civitelli R, Teitelbaum S, Novack D. Bone turnover in bone biopsies of patients with low-energy cortical fractures receiving bisphosphonates: a case series. Calcif Tissue Int. 2009;85:37–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Beck TJ, Lewiecki EM, Miller PD, Felsenberg D, Liu Y, Ding B, Libanati C. Effects of denosumab on the geometry of the proximal femur in postmenopausal women in comparison with alendronate. J Clin Densitom. 2008;11:351–359.PubMedCrossRefGoogle Scholar
  3. 3.
    Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures: Fracture Intervention Trial Research Group. Lancet. 1996;348:1535–1541.PubMedCrossRefGoogle Scholar
  4. 4.
    Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA; Alendronate Phase III Osteoporosis Treatment Study Group. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–1199.Google Scholar
  5. 5.
    Burghardt AJ, Kazakia GJ, Sode M, de Papp AE, Link TM, Majumdar S. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25:2558–2571.PubMedCrossRefGoogle Scholar
  6. 6.
    Delmas PD. Treatment of postmenopausal osteoporosis. Lancet. 2002;359:2018–2026.PubMedCrossRefGoogle Scholar
  7. 7.
    Giusti A, Hamdy NA, Papapoulos SE. Atypical fractures of the femur and bisphosphonate therapy: a systematic review of case/case series studies. Bone. 2010;47:169–180.PubMedCrossRefGoogle Scholar
  8. 8.
    Koh JS, Goh SK, Png MA, Kwek EB, Howe TS. Femoral cortical stress lesions in long-term bisphosphonate therapy: a herald of impending fracture?. J Orthop Trauma. 2010;24:75–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, van der Meulen MC, Lorich DG, Lane JM. Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int. 2009;20:1353–1362.PubMedCrossRefGoogle Scholar
  10. 10.
    Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15:613–620.PubMedCrossRefGoogle Scholar
  11. 11.
    Mashiba T, Mori S, Burr DB, Komatsubara S, Cao Y, Manabe T, Norimatsu H. The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bone Miner Metab. 2005;23 Suppl:36–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–531.PubMedCrossRefGoogle Scholar
  13. 13.
    National Osteoporosis Foundation. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation; 2008.Google Scholar
  14. 14.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–1441.PubMedCrossRefGoogle Scholar
  15. 15.
    Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22:346–350.PubMedCrossRefGoogle Scholar
  16. 16.
    Odvina CV, Levy S, Rao S, Zerwekh JE, Rao DS. Unusual mid-shaft fractures during long-term bisphosphonate therapy. Clin Endocrinol (Oxf). 2010;72:161–168.CrossRefGoogle Scholar
  17. 17.
    Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90:1294–1301.PubMedCrossRefGoogle Scholar
  18. 18.
    Papapoulos SE, Cremers SC. Prolonged bisphosphonate release after treatment in children. N Engl J Med. 2007;356:1075–1076.PubMedCrossRefGoogle Scholar
  19. 19.
    Pols HA, Felsenberg D, Hanley DA, Stepan J, Munoz-Torres M, Wilkin TJ, Qin-sheng G, Galich AM, Vandormael K, Yates AJ, Stych B. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int. 1999;9:461–468.Google Scholar
  20. 20.
    Rodan G, Reszka A, Golub E, Rizzoli R. Bone safety of long-term bisphosphonate treatment. Curr Med Res Opin. 2004;20:1291–1300.PubMedCrossRefGoogle Scholar
  21. 21.
    Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49:2–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E, Kearns A, Thomas T, Boyd SK, Boutroy S, Bogado C, Majumdar S, Fan M, Libanati C, Zanchetta J. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25:1886–1894.PubMedCrossRefGoogle Scholar
  23. 23.
    Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Sen HT, van der Meulen MC, Weinstein RS, Whyte M; American Society for Bone and Mineral Research. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25:2267–2294.PubMedCrossRefGoogle Scholar
  24. 24.
    Tosteson AN, Burge RT, Marshall DA, Lindsay R. Therapies for treatment of osteoporosis in US women: cost-effectiveness and budget impact considerations. Am J Manag Care. 2008;14:605–615.PubMedGoogle Scholar
  25. 25.
    Unnanuntana A, Gladnick BP, Donnelly E, Lane JM. The assessment of fracture risk. J Bone Joint Surg Am. 2010;92:743–753.PubMedCrossRefGoogle Scholar
  26. 26.
    Visekruna M, Wilson D, McKiernan FE. Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab. 2008;93:2948–2952.PubMedCrossRefGoogle Scholar
  27. 27.
    Watts NB, Chines A, Olszynski WP, McKeever CD, McClung MR, Zhou X, Grauer A. Fracture risk remains reduced one year after discontinuation of risedronate. Osteoporos Int. 2008;19:365–372.PubMedCrossRefGoogle Scholar
  28. 28.
    Watts NB, Diab DL. Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab. 2010;95:1555–1565.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2011

Authors and Affiliations

  • Aasis Unnanuntana
    • 1
    • 2
  • Kashif Ashfaq
    • 1
  • Quang V. Ton
    • 3
  • John P. Kleimeyer
    • 4
  • Joseph M. Lane
    • 1
  1. 1.Department of Orthopaedic SurgeryHospital for Special SurgeryNew YorkUSA
  2. 2.Department of Orthopaedic Surgery, Siriraj HospitalMahidol UniversityBangkokThailand
  3. 3.Department of Internal MedicineEnglewood Hospital and Medical CenterNew YorkUSA
  4. 4.Weill Cornell Medical CollegeCornell UniversityNew YorkUSA

Personalised recommendations