Skip to main content
Log in

Trabecular Bone Mechanical Properties in Patients with Fragility Fractures

  • Symposium: Biomechanics of Bone Healing
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Fragility fractures are generally associated with substantial loss in trabecular bone mass and alterations in structural anisotropy. Despite the high correlations between measures of trabecular mass and mechanical properties, significant overlap in density measures exists between individuals with osteoporosis and those who do not fracture. The purpose of this paper is to provide an analysis of trabecular properties associated with fragility fractures. While accurate measures of bone mass and 3-D orientation have been demonstrated to explain 80% to 90% of the variance in mechanical behavior, clinical and experimental experience suggests the unexplained proportion of variance may be a key determinant in separating high- and low-risk patients. Using a hierarchical perspective, we demonstrate the potential contributions of structural and tissue morphology, material properties, and chemical composition to the apparent mechanical properties of trabecular bone. The results suggest that the propensity for an individual to remodel or adapt to habitual damaging or nondamaging loads may distinguish them in terms of risk for failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A–C

Similar content being viewed by others

References

  1. Biggemann M, Hilweg D, Brinckmann P. Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography Skeletal Radiol. 1998;17:264–269.

    Article  Google Scholar 

  2. Bouxsein ML. Application of biomechanics to the aging human skeleton. In: Glowacki J, Rosen CJ, Bilezikian JP, eds. The Aging Skeleton. San Diego, CA: Academic Press; 1999:315–330.

    Chapter  Google Scholar 

  3. Bouxsein ML, Melton LJ, III, Riggs BL, Muller J, Atkinson EJ, Oberg AL, Robb RA, Camp JJ, Rouleau PA, McCollough CH, Khosla S. Age- and sex-specific differences in the factor of risk for vertebral fracture: A population-based study using QCT. J Bone Miner Res. 2006;21:1475–1482.

    Article  PubMed  Google Scholar 

  4. Boyce TM, Bloebaum RD. Cortical aging differences and fracture implications for the human femoral neck. Bone. 1993;14:769–778.

    Article  PubMed  CAS  Google Scholar 

  5. Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues. J Biomed Opt. 2000;5:259–268.

    Article  PubMed  CAS  Google Scholar 

  6. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878–882.

    Article  PubMed  CAS  Google Scholar 

  7. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: The EPIDOS study. J Bone Miner Res. 2000;15:1835–1841.

    Article  PubMed  CAS  Google Scholar 

  8. Cheung AM, Detsky AS. Osteoporosis and fractures: missing the bridge? JAMA. 2008;299:1468–1470.

    Article  PubMed  CAS  Google Scholar 

  9. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA. Variations in three dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res. 2000;15(1):32–40.

    Article  PubMed  CAS  Google Scholar 

  10. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–750.

    Article  PubMed  Google Scholar 

  11. Cummings SR. Are patients with hip fractures more osteoporotic? Review of the evidence. Am J Med. 1985;78:487–494.

    Article  PubMed  CAS  Google Scholar 

  12. Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech. 1988;21:131–139.

    Article  PubMed  CAS  Google Scholar 

  13. Davidson MR. Pharmacotherapeutics for osteoporosis prevention and treatment. J Midwifery Womens Health. 2003;48:39–52.

    Article  PubMed  Google Scholar 

  14. Dempster DW. The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res. 2000;15:20–23.

    Article  PubMed  CAS  Google Scholar 

  15. Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res. 2001;16:2276–2283.

    Article  PubMed  CAS  Google Scholar 

  16. Faulkner DG, Cummings SR, Black D, Palermo L, Glüer C-C, Genant HK. Simple measurement of femoral geometry predicts hip fracture: The study of osteoportic fractures. J Bone Miner Res. 1993;8:1211–1217.

    PubMed  CAS  Google Scholar 

  17. Garnero P BO, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, Christiansen C, Delmas PD. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone. 2006;38:300–309.

    Article  PubMed  CAS  Google Scholar 

  18. Gluer C-C CS, Pressman A, Li J, Gluer K, Faulkner KG, Grampp S, Genant HK, The Study of Osteoporotic Fractures Research Group. Prediction of hip fractures from pelvic radiographs: The study of osteoporotic fractures. J Bone Miner Res. 1994;9:671–677.

    Article  PubMed  Google Scholar 

  19. Goldstein SA, Goulet R, McCubbrey D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int. 1993;53(Suppl 1):S127–S133.

    Article  PubMed  Google Scholar 

  20. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and mechanical properties of trabecular bone. J Biomech. 1994;27(4):375–389.

    Article  PubMed  CAS  Google Scholar 

  21. Grimm MJ, Williams JL. Assessment of bone quantity and “quality” by ultrasound attenuation and velocity in the heel. Clin Biomech. 1997;5:281–285.

    Article  Google Scholar 

  22. Grynpas M. Age and disease-related changes in the mineral of bone. Calcif Tissue Int. 1993;53(Suppl 1):S57–S64.

    Article  PubMed  Google Scholar 

  23. Hans D, Fuerst T, Lang T, Majumdar S, Lu Y, Genant HK, Glüer C. How can we measure bone quality? Baillieres Clin Rheumatol. 1997;11:495–515.

    Article  PubMed  CAS  Google Scholar 

  24. Hansen MA, Kirsten O, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 years study. BMJ. 1991;303:961–964.

    Article  PubMed  CAS  Google Scholar 

  25. Hayes WC, Piazza SJ, Zysset PK. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am. 1991;29:1–8.

    PubMed  CAS  Google Scholar 

  26. Hoffler CE, Moore KE, Kozloff K, Zysset PK, Goldstein SA. Age, gender, and bone lamellae elastic moduli. J Orthop Res. 2000;18:432–437.

    Article  PubMed  CAS  Google Scholar 

  27. Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone. 2002;30:759–764.

    Article  PubMed  CAS  Google Scholar 

  28. Homminga J, Rietbergen Bv, Lochmuller E-M, Weinans H, Eckstein F, Huiskes R. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent”error” loads. Bone. 2004;34:510–516.

    Article  PubMed  CAS  Google Scholar 

  29. Judex S, Boyd S, Quin Y-X, Miller L, Muller R, Rubin C. Combining high-resolution micro-computed tomography with material composition to define the quality of bone tissue. Curr Osteoporos Rep. 2003;1:11–19.

    Article  PubMed  Google Scholar 

  30. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR. Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med. 1999;159:1215–1220.

    Article  PubMed  CAS  Google Scholar 

  31. Kaptoge S, Benevolenskaya LI, Bhalla AK, Cannata JB, Boonen S, Falch JA, Felsenberg D, Finn JD, Nuti R, Hoszowski K, Lorenc R, Miazgowski T, Jajic I, Lyritis G, Masaryk P, Naves-Diaz M, Poor G, Reid DM, Scheidt-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Roy DK, Lunt M, Pye SR, O’Neill TW, Silman AJ, Reeve J. Low BMD is less predictive than reported falls for future limb fractures in women across Europe: results from the European Prospective Osteoporosis Study. Bone. 2005;36(3):387–398.

    Article  PubMed  CAS  Google Scholar 

  32. Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307–333.

    Article  PubMed  CAS  Google Scholar 

  33. Kingsmill VJ, Boyde A. Mineralization density of human mandibular bone: quantitative backscattered electron image analysis. J Anat. 1998;192:245–256.

    Article  PubMed  Google Scholar 

  34. Lindsay R, Hart DM, Forrest C, Baird C. Prevention of spinal osteoporosis in oophorectomized women. Lancet. 1980;2:1151–1153.

    Article  PubMed  CAS  Google Scholar 

  35. Lochmuller E-M, Lill CA, Kuhn V, Schneider E, Eckstein F. Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res. 2002;17:1629–1638.

    Article  PubMed  Google Scholar 

  36. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–1259.

    PubMed  CAS  Google Scholar 

  37. McCreadie BR, Hollister SJ, Schaffler MB, Goldstein SA. Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J Biomech. 2004;37(4):563–572.

    Article  PubMed  Google Scholar 

  38. McCreadie BR, Morris MD, Chen T, Rao Ds, Finney WF, Widjaja E, Goldstein SA. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39:1190–1195.

    Article  PubMed  CAS  Google Scholar 

  39. Melton LJ III, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL. Determinants of bone loss from the femoral neck in women of different ages. J Bone Miner Res. 2000;15:24–31.

    Article  PubMed  Google Scholar 

  40. Melton LJ III, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res. 1993;8:1227–1233.

    PubMed  Google Scholar 

  41. Melton LJ III, Khosla S, Riggs BL. A unitary model for involution osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998;13:763–773.

    Article  PubMed  Google Scholar 

  42. Melton LJ III, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22:1885–1892.

    Article  PubMed  Google Scholar 

  43. Mittra E, Rubin C, Gruber B, Qin Y-X. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing μCT, and DXA. J Biomech. 2008;41:368–375.

    Article  PubMed  Google Scholar 

  44. Mittra E, Rubin C, Qin Y-X. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech. 2005;38:1229–1237.

    Article  PubMed  Google Scholar 

  45. Nguyen TV, Eisman JA. Genetics of fracture: challenges and opportunities. J Bone Miner Res. 2000;15:1253–1256.

    Article  PubMed  CAS  Google Scholar 

  46. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–795.

    Article  Google Scholar 

  47. Nyberg L, Gustafson Y, Berggren D, Brannstrom B, Bucht G. Falls leading to femoral neck fractures in lucid older people. J Am Geriatr Soc. 1996;44:156–160.

    PubMed  CAS  Google Scholar 

  48. Oleksik A, Lips P, Dawson A, Minshall ME, Shen W, Cooper C, Kanis J. Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J Bone Miner Res. 2000;15:1384–1392.

    Article  PubMed  CAS  Google Scholar 

  49. Oxlund H, Barchman M, Ortoft G, Andreassen TT. Reduced concentration of collagen cross-links are associated with reduced strength of bone. Bone. 1995;17(Suppl 4):S365–S371.

    Google Scholar 

  50. Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible crosslinks in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–484.

    Article  PubMed  CAS  Google Scholar 

  51. Pistoia W, Rietbergen BV, Lochmuller E-M, Lill CA, Eckstein F, Ruegsegger P. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone. 2002;30:842–848.

    Article  PubMed  CAS  Google Scholar 

  52. Pothuaud L, Rietbergen Bv, Mosekilde L, Beuf O, Levitz P, Benhamou CL, Majumdar S. Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. J Biomech. 2002;35:1091–1099.

    Article  PubMed  Google Scholar 

  53. Raisz LG. Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med. 1998;318:818–828.

    Google Scholar 

  54. Ralston SH. The genetics of osteoporosis. Bone. 1999;25:85–86.

    Article  PubMed  CAS  Google Scholar 

  55. Reeves GM, McCreadie BR, Chen S, Galecki AT, Burke DT, Miller RA, Goldstein SA. Quantitative trait loci modulate vertebral morphology and mechanical properties in a population of 18-month-old genetically heterogeneous mice. Bone. 2007;40:433–443.

    Article  PubMed  CAS  Google Scholar 

  56. Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

    Article  PubMed  CAS  Google Scholar 

  57. Riggs BL, LJ Melton I, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S. A population-based assessment of rates of bone loss at multiple skeltal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23:205–214.

    Article  PubMed  Google Scholar 

  58. Riggs BL, Melton LJ. Involutional osteoporosis. N Engl J Med. 1986;314:1676–1686.

    PubMed  CAS  Google Scholar 

  59. Riis BJ, Hansen AM, Jensen K, Overgaard K, Christiansen C. Low bone mass and fast rate of bone loss at menopause-equal risk factors for future fracture. A 15 years follow-up study. Bone. 1996;19:9–12.

    Article  PubMed  CAS  Google Scholar 

  60. Saito M, Soshi S, Fujii K. Effect of hyper- and micro-gravity on collagen post-translational controls of MC3T3-E1 osteoblast. J Bone Miner Res. 2003;18:1695–1705.

    Article  PubMed  CAS  Google Scholar 

  61. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–1850.

    Article  PubMed  Google Scholar 

  62. Seeman E, Delmas PD. Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–2261.

    Article  PubMed  CAS  Google Scholar 

  63. Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Res. 2008;26:93–100.

    Article  CAS  Google Scholar 

  64. Silverman SL, Minshall ME, Shen W, Harper KD, Xie S. Health-related quality of life subgroup of the Multiple Outcomes of Raloxifene Evaluation Study. The relationship of health-related quality of life to prevalent and incident vertebral fractures in postmenopausal women with osteoporosis: results from Multiple Outcomes of Raloxifene Evaluation Study. Arthritis Rheum. 2001;44:2611–2619.

    Article  PubMed  CAS  Google Scholar 

  65. Takahashi M, Oikawa M, Nagano A. Effect of age and menopause on serum concentrations of pentosidine, an advanced glycation end product. J Gerontol A Biol Sci Med Sci. 2000;55:137–140.

    Google Scholar 

  66. Tinetti ME. Preventing falls in elderly persons. N Engl J Med. 2003;348:42–49.

    Article  PubMed  Google Scholar 

  67. Uzawa K, Grezesik WJ, Nishimura T, Kuznetsov SA, Robey PG, Brenner DA, Yamauchi M. Differential expression of human lysyl hydroxylase genes,lysyl hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res. 1999;14:1270–1280.

    Article  Google Scholar 

  68. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biochemical properties of cortical bone. Bone. 2001;28:195–201.

    Article  PubMed  CAS  Google Scholar 

  69. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17:319–336.

    Article  PubMed  CAS  Google Scholar 

  70. Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, Delmas PD, Bouxsein ML. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006;39:1073–1079.

    Article  PubMed  CAS  Google Scholar 

  71. Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  72. Yoshihara K, Nakamura K, Kanai M, Nagayama Y, Takahashi S, Saito N, Nagata M. Determination of urinary and serum pentosidine and its application to elder patients. Biol Pharm Bull. 1998;21:1005–1008.

    PubMed  CAS  Google Scholar 

  73. Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, Markwardt P, Burr DB. Geometric structure of the femoral neck measured using dual-engergy x-ray absorptiometry. J Bone Miner Res. 1994;9:1053–1064.

    PubMed  CAS  Google Scholar 

  74. Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1999;45:108–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peggy Piech for her contributions to this manuscript. We acknowledge the scientific contributions of Dr. Barbara McCreadie and Dr. Traci Ciarelli from discussions and reviews of their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Goldstein PhD.

Additional information

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article. Funding from the wide variety of studies summarized in this paper was provided from grants from the National Institutes of Health, the National Science Foundation, and the Whitaker Foundation.

About this article

Cite this article

Kreider, J.M., Goldstein, S.A. Trabecular Bone Mechanical Properties in Patients with Fragility Fractures. Clin Orthop Relat Res 467, 1955–1963 (2009). https://doi.org/10.1007/s11999-009-0751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-0751-8

Keywords

Navigation