Clinical Orthopaedics and Related Research

, Volume 466, Issue 9, pp 2114–2130 | Cite as

Osteosarcoma Development and Stem Cell Differentiation

  • Ni Tang
  • Wen-Xin Song
  • Jinyong Luo
  • Rex C. Haydon
  • Tong-Chuan He
Symposium: Molecular Genetics in Sarcoma

Abstract

Osteosarcoma is the most common nonhematologic malignancy of bone in children and adults. The peak incidence occurs in the second decade of life, with a smaller peak after age 50. Osteosarcoma typically arises around the growth plate of long bones. Most osteosarcoma tumors are of high grade and tend to develop pulmonary metastases. Despite clinical improvements, patients with metastatic or recurrent diseases have a poor prognosis. Here, we reviewed the current understanding of human osteosarcoma, with an emphasis on potential links between defective osteogenic differentiation and bone tumorigenesis. Existing data indicate osteosarcoma tumors display a broad range of genetic and molecular alterations, including the gains, losses, or arrangements of chromosomal regions, inactivation of tumor suppressor genes, and the deregulation of major signaling pathways. However, except for p53 and/or RB mutations, most alterations are not constantly detected in the majority of osteosarcoma tumors. With a rapid expansion of our knowledge about stem cell biology, emerging evidence suggests osteosarcoma should be regarded as a differentiation disease caused by genetic and epigenetic changes that interrupt osteoblast differentiation from mesenchymal stem cells. Understanding the molecular pathogenesis of human osteosarcoma could ultimately lead to the development of diagnostic and prognostic markers, as well as targeted therapeutics for osteosarcoma patients.

Notes

Acknowledgments

We apologize to the investigators whose original work could not be cited due to space constraints.

References

  1. 1.
    Abramson DH, Ellsworth RM, Kitchin FD, Tung G. Second nonocular tumors in retinoblastoma survivors. Are they radiation-induced? Ophthalmology. 1984;91:1351–1355.Google Scholar
  2. 2.
    Alonso J, Garcia-Miguel P, Abelairas J, Mendiola M, Pestana A. A microsatellite fluorescent method for linkage analysis in familial retinoblastoma and deletion detection at the RB1 locus in retinoblastoma and osteosarcoma. Diagn Mol Pathol. 2001;10:9–14.PubMedGoogle Scholar
  3. 3.
    Andreassen A, Oyjord T, Hovig E, Holm R, Florenes VA, Nesland JM, Myklebost O, Hoie J, Bruland OS, Borresen AL, et al. p53 abnormalities in different subtypes of human sarcomas. Cancer Res. 1993;53:468–471.PubMedGoogle Scholar
  4. 4.
    Araki N, Uchida A, Kimura T, Yoshikawa H, Aoki Y, Ueda T, Takai S, Miki T, Ono K. Involvement of the retinoblastoma gene in primary osteosarcomas and other bone and soft-tissue tumors. Clin Orthop Relat Res. 1991;270:271–277.PubMedGoogle Scholar
  5. 5.
    Aue G, Muralidhar B, Schwartz HS, Butler MG. Telomerase activity in skeletal sarcomas. Ann Surg Oncol. 1998;5:627–634.PubMedGoogle Scholar
  6. 6.
    Baek WK, Park JW, Lim JH, Suh SI, Suh MH, Gabrielson E, Kwon TK. Molecular cloning and characterization of the human budding uninhibited by benomyl (BUB3) promoter. Gene. 2002;295:117–123.PubMedGoogle Scholar
  7. 7.
    Balch C, Dedman JR. Annexins II and V inhibit cell migration. Exp Cell Res. 1997;237:259–263.PubMedGoogle Scholar
  8. 8.
    Barker N, Clevers H. Catenins, Wnt signaling and cancer. Bioessays. 2000;22:961–965.PubMedGoogle Scholar
  9. 9.
    Barrios C, Castresana JS, Kreicbergs A. Clinicopathologic correlations and short-term prognosis in musculoskeletal sarcoma with c-myc oncogene amplification. Am J Clin Oncol. 1994;17:273–276.PubMedGoogle Scholar
  10. 10.
    Barrios C, Castresana JS, Ruiz J, Kreicbergs A. Amplification of c-myc oncogene and absence of c-Ha-ras point mutation in human bone sarcoma. J Orthop Res. 1993;11:556–563.PubMedGoogle Scholar
  11. 11.
    Beedles KE, Sharpe PT, Wagner EF, Grigoriadis AE. A putative role for c-Fos in the pathophysiology of Paget’s disease. J Bone Miner Res. 1999;14 Suppl 2:21–28.PubMedGoogle Scholar
  12. 12.
    Belchis DA, Meece CA, Benko FA, Rogan PK, Williams RA, Gocke CD. Loss of heterozygosity and microsatellite instability at the retinoblastoma locus in osteosarcomas. Diagn Mol Pathol. 1996;5:214–219.PubMedGoogle Scholar
  13. 13.
    Benassi MS, Molendini L, Gamberi G, Ragazzini P, Sollazzo MR, Merli M, Asp J, Magagnoli G, Balladelli A, Bertoni F, Picci P. Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int J Cancer. 1999;84:489–493.PubMedGoogle Scholar
  14. 14.
    Benini S, Baldini N, Manara MC, Chano T, Serra M, Rizzi S, Lollini PL, Picci P, Scotlandi K. Redundancy of autocrine loops in human osteosarcoma cells. Int J Cancer. 1999;80:581–588.PubMedGoogle Scholar
  15. 15.
    Berner JM, Forus A, Elkahloun A, Meltzer PS, Fodstad O, Myklebost O. Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosomes Cancer. 1996;17:254–259.PubMedGoogle Scholar
  16. 16.
    Berner JM, Meza-Zepeda LA, Kools PF, Forus A, Schoenmakers EF, Van de Ven WJ, Fodstad O, Myklebost O. HMGIC, the gene for an architectural transcription factor, is amplified and rearranged in a subset of human sarcomas. Oncogene. 1997;14:2935–2941.PubMedGoogle Scholar
  17. 17.
    Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004;6:423–435.PubMedGoogle Scholar
  18. 18.
    Bjornland K, Flatmark K, Pettersen S, Aaasen AO, Fodstad O, Maelandsmo GM. Matrix metalloproteinases participate in osteosarcoma invasion. J Surg Res. 2005;127:151–156.PubMedGoogle Scholar
  19. 19.
    Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med. 1996;184:1101–1109.PubMedGoogle Scholar
  20. 20.
    Bodey B, Groger AM, Bodey B Jr., Siegel SE, Kaiser HE. Immunohistochemical detection of p53 protein overexpression in primary human osteosarcomas. Anticancer Res. 1997;17:493–498.PubMedGoogle Scholar
  21. 21.
    Burrow S, Andrulis IL, Pollak M, Bell RS. Expression of insulin-like growth factor receptor, IGF-1, and IGF-2 in primary and metastatic osteosarcoma. J Surg Oncol. 1998;69:21–27.PubMedGoogle Scholar
  22. 22.
    Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286–3305.PubMedGoogle Scholar
  23. 23.
    Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 1999;9:M57–60.PubMedGoogle Scholar
  24. 24.
    Carbone M, Rizzo P, Procopio A, Giuliano M, Pass HI, Gebhardt MC, Mangham C, Hansen M, Malkin DF, Bushart G, Pompetti F, Picci P, Levine AS, Bergsagel JD, Garcea RL. SV40-like sequences in human bone tumors. Oncogene. 1996;13:527–535.PubMedGoogle Scholar
  25. 25.
    Carlsson H, Petersson S, Enerback C. Cluster analysis of S100 gene expression and genes correlating to psoriasin (S100A7) expression at different stages of breast cancer development. Int J Oncol. 2005;27:1473–1481.PubMedGoogle Scholar
  26. 26.
    Carpio L, Gladu J, Goltzman D, Rabbani SA. Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways. Am J Physiol Endocrinol Metab. 2001;281:E489–499.PubMedGoogle Scholar
  27. 27.
    Castillero-Trejo Y, Eliazer S, Xiang L, Richardson JA, Ilaria RL Jr. Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, ewing sarcoma-like tumors. Cancer Res. 2005;65:8698–8705.PubMedGoogle Scholar
  28. 28.
    Castresana JS, Rubio MP, Gomez L, Kreicbergs A, Zetterberg A, Barrios C. Detection of TP53 gene mutations in human sarcomas. Eur J Cancer. 1995;31A:735–738.PubMedGoogle Scholar
  29. 29.
    Chandar N, Billig B, McMaster J, Novak J. Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer. 1992;65:208–214.PubMedGoogle Scholar
  30. 30.
    Chen CY, Oliner JD, Zhan Q, Fornace AJ Jr., Vogelstein B, Kastan MB. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc Natl Acad Sci USA. 1994;91:2684–2688.PubMedGoogle Scholar
  31. 31.
    Chien KR, Karsenty G. Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell. 2005;120:533–544.PubMedGoogle Scholar
  32. 32.
    Cole MD, McMahon SB. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene. 1999;18:2916–2924.PubMedGoogle Scholar
  33. 33.
    Cordon-Cardo C. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol. 1995;147:545–560.PubMedGoogle Scholar
  34. 34.
    Cormier JN, Pollock RE. Soft tissue sarcomas. CA Cancer J Clin. 2004;54:94–109.PubMedGoogle Scholar
  35. 35.
    Deichmann M, Benner A, Bock M, Jackel A, Uhl K, Waldmann V, Naher H. S100-Beta, melanoma-inhibiting activity, and lactate dehydrogenase discriminate progressive from nonprogressive American Joint Committee on Cancer stage IV melanoma. J Clin Oncol. 1999;17:1891–1896.PubMedGoogle Scholar
  36. 36.
    Deng ZL, Sharff KA, Tang N, Song WX, Luo JXL, Chen J, Bennett E, Reid R. Manning D, Xue A, Montag AG, Luu HH, Haydon RC, He T-C. Regulation of osteogenic differentiation during skeletal development. Frontiers in Biosci. 2008;13:2001–2021.Google Scholar
  37. 37.
    Diederichs S, Bulk E, Steffen B, Ji P, Tickenbrock L, Lang K, Zanker KS, Metzger R, Schneider PM, Gerke V, Thomas M, Berdel WE, Serve H, Muller-Tidow C. S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res. 2004;64:5564–5569.PubMedGoogle Scholar
  38. 38.
    Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999;13:1025–1036.PubMedGoogle Scholar
  39. 39.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–754.PubMedGoogle Scholar
  40. 40.
    el-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol. 1998;8:345–357.PubMedGoogle Scholar
  41. 41.
    Elefteriou F, Benson MD, Sowa H, Starbuck M, Liu X, Ron D, Parada LF, Karsenty G. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 2006;4:441–451.PubMedGoogle Scholar
  42. 42.
    Eliseev RA, Dong YF, Sampson E, Zuscik MJ, Schwarz EM, O’Keefe RJ, Rosier RN, Drissi MH. Runx2-mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis. Oncogene. [Epub ahead of print]. Jan 28 2008.Google Scholar
  43. 43.
    Elkahloun AG, Bittner M, Hoskins K, Gemmill R, Meltzer PS. Molecular cytogenetic characterization and physical mapping of 12q13–15 amplification in human cancers. Genes Chromosomes Cancer. 1996;17:205–214.PubMedGoogle Scholar
  44. 44.
    Elkahloun AG, Krizman DB, Wang Z, Hofmann TA, Roe B, Meltzer PS. Transcript mapping in a 46-kb sequenced region at the core of 12q13.3 amplification in human cancers. Genomics. 1997;42:295–301.PubMedGoogle Scholar
  45. 45.
    Emoto K, Sawada H, Yamada Y, Fujimoto H, Takahama Y, Ueno M, Takayama T, Uchida H, Kamada K, Naito A, Hirao S, Nakajima Y. Annexin II overexpression is correlated with poor prognosis in human gastric carcinoma. Anticancer Res. 2001;21:1339–1345.PubMedGoogle Scholar
  46. 46.
    Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene. 1995;10:739–749.PubMedGoogle Scholar
  47. 47.
    Ferrari C, Benassi S, Ponticelli F, Gamberi G, Ragazzini P, Pazzaglia L, Balladelli A, Bertoni F, Picci P. Role of MMP-9 and its tissue inhibitor TIMP-1 in human osteosarcoma: findings in 42 patients followed for 1–16 years. Acta Orthop Scand. 2004;75:487–491.PubMedGoogle Scholar
  48. 48.
    Feugeas O, Guriec N, Babin-Boilletot A, Marcellin L, Simon P, Babin S, Thyss A, Hofman P, Terrier P, Kalifa C, Brunat-Mentigny M, Patricot LM, Oberling F. Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol. 1996;14:467–472.PubMedGoogle Scholar
  49. 49.
    Forus A, Florenes VA, Maelandsmo GM, Meltzer PS, Fodstad O, Myklebost O. Mapping of amplification units in the q13–14 region of chromosome 12 in human sarcomas: some amplica do not include MDM2. Cell Growth Differ. 1993;4:1065–1070.PubMedGoogle Scholar
  50. 50.
    Franchi A, Calzolari A, Zampi G. Immunohistochemical detection of c-fos and c-jun expression in osseous and cartilaginous tumours of the skeleton. Virchows Arch. 1998;432:515–519.PubMedGoogle Scholar
  51. 51.
    Fuchs B, Pritchard DJ. Etiology of osteosarcoma. Clin Orthop Relat Res. 2002;397:40–52.PubMedGoogle Scholar
  52. 52.
    Galindo M, Pratap J, Young DW, Hovhannisyan H, Im HJ, Choi JY, Lian JB, Stein JL, Stein GS, van Wijnen AJ. The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J Biol Chem. 2005;280:20274–20285.PubMedGoogle Scholar
  53. 53.
    Gamberi G, Benassi MS, Bohling T, Ragazzini P, Molendini L, Sollazzo MR, Pompetti F, Merli M, Magagnoli G, Balladelli A, Picci P. C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. Oncology. 1998;55:556–563.PubMedGoogle Scholar
  54. 54.
    German J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore). 1993;72:393–406.Google Scholar
  55. 55.
    Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia. 2005;7:967–976.PubMedGoogle Scholar
  56. 56.
    Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003;1653:1–24.PubMedGoogle Scholar
  57. 57.
    Gillette JM, Chan DC, Nielsen-Preiss SM. Annexin 2 expression is reduced in human osteosarcoma metastases. J Cell Biochem. 2004;92:820–832.PubMedGoogle Scholar
  58. 58.
    Glass DA 2nd, Karsenty G. In vivo analysis of Wnt signaling in bone. Endocrinology. 2007;148:2630–2634.PubMedGoogle Scholar
  59. 59.
    Gobbi G, Sangiorgi L, Lenzi L, Casadei R, Canaider S, Strippoli P, Lucarelli E, Ghedini I, Donati D, Fabbri N, Warzecha J, Yeoung C, Helman LJ, Picci P, Carinci P. Seven BMPs and all their receptors are simultaneously expressed in osteosarcoma cells. Int J Oncol. 2002;20:143–147.PubMedGoogle Scholar
  60. 60.
    Gokgoz N, Wunder JS, Mousses S, Eskandarian S, Bell RS, Andrulis IL. Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma. Cancer. 2001;92:2181–2189.PubMedGoogle Scholar
  61. 61.
    Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281:22429–22433.PubMedGoogle Scholar
  62. 62.
    Gorlick R, Anderson P, Andrulis I, Arndt C, Beardsley GP, Bernstein M, Bridge J, Cheung NK, Dome JS, Ebb D, Gardner T, Gebhardt M, Grier H, Hansen M, Healey J, Helman L, Hock J, Houghton J, Houghton P, Huvos A, Khanna C, Kieran M, Kleinerman E, Ladanyi M, Lau C, Malkin D, Marina N, Meltzer P, Meyers P, Schofield D, Schwartz C, Smith MA, Toretsky J, Tsokos M, Wexler L, Wigginton J, Withrow S, Schoenfeldt M, Anderson B. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res. 2003;9:5442–5453.PubMedGoogle Scholar
  63. 63.
    Gorlick R, Huvos AG, Heller G, Aledo A, Beardsley GP, Healey JH, Meyers PA. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol. 1999;17:2781–2788.PubMedGoogle Scholar
  64. 64.
    Goto A, Kanda H, Ishikawa Y, Matsumoto S, Kawaguchi N, Machinami R, Kato Y, Kitagawa T. Association of loss of heterozygosity at the p53 locus with chemoresistance in osteosarcomas. Jpn J Cancer Res. 1998;89:539–547.PubMedGoogle Scholar
  65. 65.
    Goto M, Miller RW, Ishikawa Y, Sugano H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev. 1996;5:239–246.PubMedGoogle Scholar
  66. 66.
    Haber DA. Splicing into senescence: the curious case of p16 and p19ARF. Cell. 1997;91:555–558.PubMedGoogle Scholar
  67. 67.
    Hansen MF. Genetic and molecular aspects of osteosarcoma. J Musculoskelet Neuronal Interact. 2002;2:554–560.PubMedGoogle Scholar
  68. 68.
    Hansen MF, Cavenee WK. Genetics of cancer predisposition. Cancer Res. 1987;47:5518–5527.PubMedGoogle Scholar
  69. 69.
    Hansen R, Oren M. p53; from inductive signal to cellular effect. Curr Opin Genet Dev. 1997;7:46–51.PubMedGoogle Scholar
  70. 70.
    Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14:2393–2409.PubMedGoogle Scholar
  71. 71.
    Harpio R, Einarsson R. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin Biochem. 2004;37:512–518.PubMedGoogle Scholar
  72. 72.
    Hatakeyama M, Weinberg RA. The role of RB in cell cycle control. Prog Cell Cycle Res. 1995;1:9–19.PubMedGoogle Scholar
  73. 73.
    Hayden JB, Hoang BH. Osteosarcoma: basic science and clinical implications. Orthop Clin North Am. 2006;37:1–7.PubMedGoogle Scholar
  74. 74.
    Haydon RC, Deyrup A, Ishikawa A, Heck R, Jiang W, Zhou L, Feng T, King D, Cheng H, Breyer B, Peabody T, Simon MA, Montag AG, He TC. Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer. 2002;102:338–342.PubMedGoogle Scholar
  75. 75.
    Haydon RC, Luu HH, He TC. Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis. Clin Orthop Relat Res. 2007;454:237–246.PubMedGoogle Scholar
  76. 76.
    Haydon RC, Zhou L, Feng T, Breyer B, Cheng H, Jiang W, Ishikawa A, Peabody T, Montag A, Simon MA, He TC. Nuclear receptor agonists as potential differentiation therapy agents for human osteosarcoma. Clin Cancer Res. 2002;8:1288–1294.PubMedGoogle Scholar
  77. 77.
    Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–694.PubMedGoogle Scholar
  78. 78.
    Hickson ID. RecQ helicases: caretakers of the genome. Nat Rev Cancer. 2003;3:169–178.PubMedGoogle Scholar
  79. 79.
    Himelstein BP. Osteosarcoma and other bone cancers. Curr Opin Oncol. 1998;10:326–333.PubMedGoogle Scholar
  80. 80.
    Hoang BH, Kubo T, Healey JH, Sowers R, Mazza B, Yang R, Huvos AG, Meyers PA, Gorlick R. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer. 2004;109:106–111.PubMedGoogle Scholar
  81. 81.
    Hoang BH, Kubo T, Healey JH, Yang R, Nathan SS, Kolb EA, Mazza B, Meyers PA, Gorlick R. Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res. 2004;64:2734–2739.PubMedGoogle Scholar
  82. 82.
    Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309:1074–1078.PubMedGoogle Scholar
  83. 83.
    Hong SH, Kadosawa T, Nozaki K, Mochizuki M, Matsunaga S, Nishimura R, Sasaki N. In vitro retinoid-induced growth inhibition and morphologic differentiation of canine osteosarcoma cells. Am J Vet Res. 2000;61:69–73.PubMedGoogle Scholar
  84. 84.
    Hornebeck W, Lambert E, Petitfrere E, Bernard P. Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression. Biochimie. 2005;87:377–383.PubMedGoogle Scholar
  85. 85.
    Horstmann MA, Posl M, Scholz RB, Anderegg B, Simon P, Baumgaertl K, Delling G, Kabisch H. Frequent reduction or loss of DCC gene expression in human osteosarcoma. Br J Cancer. 1997;75:1309–1317.PubMedGoogle Scholar
  86. 86.
    Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–48.PubMedGoogle Scholar
  87. 87.
    Hung J, Anderson R. p53: functions, mutations and sarcomas. Acta Orthop Scand Suppl. 1997;273:68–73.PubMedGoogle Scholar
  88. 88.
    Huvos AG, Woodard HQ, Cahan WG, Higinbotham NL, Stewart FW, Butler A, Bretsky SS. Postradiation osteogenic sarcoma of bone and soft tissues. A clinicopathologic study of 66 patients. Cancer. 1985;55:1244–1255.PubMedGoogle Scholar
  89. 89.
    Iwao K, Miyoshi Y, Nawa G, Yoshikawa H, Ochi T, Nakamura Y. Frequent beta-catenin abnormalities in bone and soft-tissue tumors. Jpn J Cancer Res. 1999;90:205–209.PubMedGoogle Scholar
  90. 90.
    Iwaya K, Ogawa H, Kuroda M, Izumi M, Ishida T, Mukai K. Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis. Clin Exp Metastasis. 2003;20:525–529.PubMedGoogle Scholar
  91. 91.
    Jin Y, Yang LJ. Immunohistochemical analysis of bone morphogenetic protein (BMP) in osteosarcoma. J Oral Pathol Med. 1990;19:152–154.PubMedGoogle Scholar
  92. 92.
    Jung ST, Moon ES, Seo HY, Kim JS, Kim GJ, Kim YK. Expression and significance of TGF-beta isoform and VEGF in osteosarcoma. Orthopedics. 2005;28:755–760.PubMedGoogle Scholar
  93. 93.
    Kanoe H, Nakayama T, Murakami H, Hosaka T, Yamamoto H, Nakashima Y, Tsuboyama T, Nakamura T, Sasaki MS, Toguchida J. Amplification of the CDK4 gene in sarcomas: tumor specificity and relationship with the RB gene mutation. Anticancer Res. 1998;18:2317–2321.PubMedGoogle Scholar
  94. 94.
    Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 2007;26:1–18.PubMedGoogle Scholar
  95. 95.
    Karsenty G. Bone formation and factors affecting this process. Matrix Biol. 2000;19:85–89.PubMedGoogle Scholar
  96. 96.
    Karsenty G. Role of Cbfa1 in osteoblast differentiation and function. Semin Cell Dev Biol. 2000;11:343–346.PubMedGoogle Scholar
  97. 97.
    Karsenty G. Central control of bone formation. Adv Nephrol Necker Hosp. 2001;31:119–133.PubMedGoogle Scholar
  98. 98.
    Karsenty G. Genetic control of skeletal development. Novartis Found Symp. 2001;232:6–17; discussion 17–22.PubMedGoogle Scholar
  99. 99.
    Karsenty G. The complexities of skeletal biology. Nature. 2003;423:316–318.PubMedGoogle Scholar
  100. 100.
    Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406.PubMedGoogle Scholar
  101. 101.
    Keel SB, Jaffe KA, Petur Nielsen G, Rosenberg AE. Orthopaedic implant-related sarcoma: a study of twelve cases. Mod Pathol. 2001;14:969–977.PubMedGoogle Scholar
  102. 102.
    Kempf-Bielack B, Bielack SS, Jurgens H, Branscheid D, Berdel WE, Exner GU, Gobel U, Helmke K, Jundt G, Kabisch H, Kevric M, Klingebiel T, Kotz R, Maas R, Schwarz R, Semik M, Treuner J, Zoubek A, Winkler K. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23:559–568.PubMedGoogle Scholar
  103. 103.
    Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 2001;7:673–679.PubMedGoogle Scholar
  104. 104.
    Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 2001;61:3750–3759.PubMedGoogle Scholar
  105. 105.
    Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis. 2000;18:261–271.PubMedGoogle Scholar
  106. 106.
    Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10:182–186.PubMedGoogle Scholar
  107. 107.
    Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT. Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res. 1993;53:5535–5541.PubMedGoogle Scholar
  108. 108.
    Kim H, Kwak NJ, Lee JY, Choi BH, Lim Y, Ko YJ, Kim YH, Huh PW, Lee KH, Rha HK, Wang YP. Merlin neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem. 2004;279:7812–7818.PubMedGoogle Scholar
  109. 109.
    Kim HS, Park YB, Oh JH, Jeong J, Kim CJ, Lee SH. Expression of CD44 isoforms correlates with the metastatic potential of osteosarcoma. Clin Orthop Relat Res. 2002;396:184–190.PubMedGoogle Scholar
  110. 110.
    Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA. Bone regeneration is regulated by wnt signaling. J Bone Miner Res. 2007;22:1913–1923.PubMedGoogle Scholar
  111. 111.
    Kitchin FD, Ellsworth RM. Pleiotropic effects of the gene for retinoblastoma. J Med Genet. 1974;11:244–246.PubMedGoogle Scholar
  112. 112.
    Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997;150:1–13.PubMedGoogle Scholar
  113. 113.
    Kloen P, Gebhardt MC, Perez-Atayde A, Rosenberg AE, Springfield DS, Gold LI, Mankin HJ. Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression. Cancer. 1997;80:2230–2239.PubMedGoogle Scholar
  114. 114.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–764.PubMedGoogle Scholar
  115. 115.
    Kools PF, Van de Ven WJ. Amplification of a rearranged form of the high-mobility group protein gene HMGIC in OsA-CI osteosarcoma cells. Cancer Genet Cytogenet. 1996;91:1–7.PubMedGoogle Scholar
  116. 116.
    Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev. 2005;15:520–527.PubMedGoogle Scholar
  117. 117.
    Kruzelock RP, Murphy EC, Strong LC, Naylor SL, Hansen MF. Localization of a novel tumor suppressor locus on human chromosome 3q important in osteosarcoma tumorigenesis. Cancer Res. 1997;57:106–109.PubMedGoogle Scholar
  118. 118.
    Kuryu M, Ozaki T, Nishida K, Shibahara M, Kawai A, Inoue H. Expression of CD44 variants in osteosarcoma. J Cancer Res Clin Oncol. 1999;125:646–652.PubMedGoogle Scholar
  119. 119.
    Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res. 1993;53:16–18.PubMedGoogle Scholar
  120. 120.
    Ladanyi M, Park CK, Lewis R, Jhanwar SC, Healey JH, Huvos AG. Sporadic amplification of the MYC gene in human osteosarcomas. Diagn Mol Pathol. 1993;2:163–167.PubMedGoogle Scholar
  121. 121.
    Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 2003;17:1090–1100.PubMedGoogle Scholar
  122. 122.
    Lamour V, Detry C, Sanchez C, Henrotin Y, Castronovo V, Bellahcene A. Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J Biol Chem. 2007;282:36240–36249.PubMedGoogle Scholar
  123. 123.
    Larsen CJ. p16INK4a: a gene with a dual capacity to encode unrelated proteins that inhibit cell cycle progression. Oncogene. 1996;12:2041–2044.PubMedGoogle Scholar
  124. 124.
    Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, Smith S, Hill DE, Sidransky D, Kinzler KW, Vogelstein B. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993;53(10 Suppl):2231–2234.PubMedGoogle Scholar
  125. 125.
    Lednicky JA, Stewart AR, Jenkins JJ 3rd, Finegold MJ, Butel JS. SV40 DNA in human osteosarcomas shows sequence variation among T-antigen genes. Int J Cancer. 1997;72:791–800.PubMedGoogle Scholar
  126. 126.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331.PubMedGoogle Scholar
  127. 127.
    Lewis VO. What’s new in musculoskeletal oncology. J Bone Joint Surg Am. 2007;89:1399–1407.PubMedGoogle Scholar
  128. 128.
    Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48:5358–5362.PubMedGoogle Scholar
  129. 129.
    Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord. 2006;7:1–16.PubMedGoogle Scholar
  130. 130.
    Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood. 2002;100:2597–2606.PubMedGoogle Scholar
  131. 131.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedGoogle Scholar
  132. 132.
    Lonardo F, Ueda T, Huvos AG, Healey J, Ladanyi M. p53 and MDM2 alterations in osteosarcomas: correlation with clinicopathologic features and proliferative rate. Cancer. 1997;79:1541–1547.PubMedGoogle Scholar
  133. 133.
    Lopez-Guerrero JA, Lopez-Gines C, Pellin A, Carda C, Llombart-Bosch A. Deregulation of the G1 to S-phase cell cycle checkpoint is involved in the pathogenesis of human osteosarcoma. Diagn Mol Pathol. 2004;13:81–91.PubMedGoogle Scholar
  134. 134.
    Luo J, Chen J, Deng ZL, Luo X, Song WX, Sharff KA, Tang N, Haydon RC, Luu HH, He TC. Wnt signaling and human diseases: what are the therapeutic implications? Lab Invest. 2007;87:97–103.PubMedGoogle Scholar
  135. 135.
    Luo J, Sun MH, Kang Q, Peng Y, Jiang W, Luu HH, Luo Q, Park JY, Li Y, Haydon RC, He TC. Gene therapy for bone regeneration. Curr Gene Ther. 2005;5:167–179.PubMedGoogle Scholar
  136. 136.
    Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC, He TC. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007;25:665–677.PubMedGoogle Scholar
  137. 137.
    Luu HH, Zhang R, Haydon RC, Rayburn E, Kang Q, Si W, Park JK, Wang H, Peng Y, Jiang W, He TC. Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets. 2004;4:653–671.PubMedGoogle Scholar
  138. 138.
    Luu HH, Zhou L, Haydon RC, Deyrup AT, Montag AG, Huo D, Heck R, Heizmann CW, Peabody TD, Simon MA, He TC. Increased expression of S100A6 is associated with decreased metastasis and inhibition of cell migration and anchorage independent growth in human osteosarcoma. Cancer Lett. 2005;229:135–148.PubMedGoogle Scholar
  139. 139.
    MacEwen EG, Pastor J, Kutzke J, Tsan R, Kurzman ID, Thamm DH, Wilson M, Radinsky R. IGF-1 receptor contributes to the malignant phenotype in human and canine osteosarcoma. J Cell Biochem. 2004;92:77–91.PubMedGoogle Scholar
  140. 140.
    Maelandsmo GM, Berner JM, Florenes VA, Forus A, Hovig E, Fodstad O, Myklebost O. Homozygous deletion frequency and expression levels of the CDKN2 gene in human sarcomas–relationship to amplification and mRNA levels of CDK4 and CCND1. Br J Cancer. 1995;72:393–398.PubMedGoogle Scholar
  141. 141.
    Maitra A, Roberts H, Weinberg AG, Geradts J. Loss of p16(INK4a) expression correlates with decreased survival in pediatric osteosarcomas. Int J Cancer. 2001;95:34–38.PubMedGoogle Scholar
  142. 142.
    Makitie T, Carpen O, Vaheri A, Kivela T. Ezrin as a prognostic indicator and its relationship to tumor characteristics in uveal malignant melanoma. Invest Ophthalmol Vis Sci. 2001;42:2442–2449.PubMedGoogle Scholar
  143. 143.
    Maliakal JC, Asahina I, Hauschka PV, Sampath TK. Osteogenic protein-1 (BMP-7) inhibits cell proliferation and stimulates the expression of markers characteristic of osteoblast phenotype in rat osteosarcoma (17/2.8) cells. Growth Factors. 1994;11:227–234.PubMedGoogle Scholar
  144. 144.
    Malkin D, Jolly KW, Barbier N, Look AT, Friend SH, Gebhardt MC, Andersen TI, Borresen AL, Li FP, Garber J, et al. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med. 1992;326:1309–1315.PubMedGoogle Scholar
  145. 145.
    Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–1238.PubMedGoogle Scholar
  146. 146.
    Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–441.PubMedGoogle Scholar
  147. 147.
    Mark RJ, Poen J, Tran LM, Fu YS, Selch MT, Parker RG. Postirradiation sarcomas. A single-institution study and review of the literature. Cancer. 1994;73:2653–2662.PubMedGoogle Scholar
  148. 148.
    Martin TA, Harrison G, Mansel RE, Jiang WG. The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol. 2003;46:165–186.PubMedGoogle Scholar
  149. 149.
    Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–791.PubMedGoogle Scholar
  150. 150.
    Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14:627–644.PubMedGoogle Scholar
  151. 151.
    Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. Embo J. 2000;19:1745–1754.PubMedGoogle Scholar
  152. 152.
    Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA. 1987;84:7716–7719.PubMedGoogle Scholar
  153. 153.
    McClatchey AI. Neurofibromatosis type II: mouse models reveal broad roles in tumorigenesis and metastasis. Mol Med Today. 2000;6:252–253.PubMedGoogle Scholar
  154. 154.
    McClatchey AI, Giovannini M. Membrane organization and tumorigenesis–the NF2 tumor suppressor, Merlin. Genes Dev. 2005;19:2265–2277.PubMedGoogle Scholar
  155. 155.
    McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT, Jacks T. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 1998;12:1121–1133.PubMedGoogle Scholar
  156. 156.
    McIntyre JF, Smith-Sorensen B, Friend SH, Kassell J, Borresen AL, Yan YX, Russo C, Sato J, Barbier N, Miser J, et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol. 1994;12:925–930.PubMedGoogle Scholar
  157. 157.
    McNairn JD, Damron TA, Landas SK, Ambrose JL, Shrimpton AE. Inheritance of osteosarcoma and Paget’s disease of bone: a familial loss of heterozygosity study. J Mol Diagn. 2001;3:171–177.PubMedGoogle Scholar
  158. 158.
    Melo-Junior MR, Filho JL, Cavalcanti CL, Patu VJ, Beltrao EI, Carvalho LB. Detection of S100 protein from prostatic cancer patients using anti-S100 protein antibody immobilized on POS-PVA discs. Biotechnol Bioeng. 2007;97:182–187.PubMedGoogle Scholar
  159. 159.
    Meltzer PS, Jankowski SA, Dal Cin P, Sandberg AA, Paz IB, Coccia MA. Identification and cloning of a novel amplified DNA sequence in human malignant fibrous histiocytoma derived from a region of chromosome 12 frequently rearranged in soft tissue tumors. Cell Growth Differ. 1991;2:495–501.PubMedGoogle Scholar
  160. 160.
    Mendoza S, David H, Gaylord GM, Miller CW. Allelic loss at 10q26 in osteosarcoma in the region of the BUB3 and FGFR2 genes. Cancer Genet Cytogenet. 2005;158:142–147.PubMedGoogle Scholar
  161. 161.
    Mendoza SM, Konishi T, Miller CW. Integration of SV40 in human osteosarcoma DNA. Oncogene. 1998;17:2457–2462.PubMedGoogle Scholar
  162. 162.
    Miller CW, Aslo A, Campbell MJ, Kawamata N, Lampkin BC, Koeffler HP. Alterations of the p15, p16,and p18 genes in osteosarcoma. Cancer Genet Cytogenet. 1996;86:136–142.PubMedGoogle Scholar
  163. 163.
    Miller CW, Aslo A, Tsay C, Slamon D, Ishizaki K, Toguchida J, Yamamuro T, Lampkin B, Koeffler HP. Frequency and structure of p53 rearrangements in human osteosarcoma. Cancer Res. 1990;50:7950–7954.PubMedGoogle Scholar
  164. 164.
    Miller CW, Aslo A, Won A, Tan M, Lampkin B, Koeffler HP. Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol. 1996;122:559–565.PubMedGoogle Scholar
  165. 165.
    Mintz MB, Sowers R, Brown KM, Hilmer SC, Mazza B, Huvos AG, Meyers PA, Lafleur B, McDonough WS, Henry MM, Ramsey KE, Antonescu CR, Chen W, Healey JH, Daluski A, Berens ME, Macdonald TJ, Gorlick R, Stephan DA. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res. 2005;65:1748–1754.PubMedGoogle Scholar
  166. 166.
    Molendini L, Benassi MS, Magagnoli G, Merli M, Sollazzo MR, Ragazzini P, Gamberi G, Ferrari C, Balladelli A, Bacchini P, Picci P. Prognostic significance of cyclin expression in human osteosarcoma. Int J Oncol. 1998;12:1007–1011.PubMedGoogle Scholar
  167. 167.
    Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res. 1998;26:3453–3459.PubMedGoogle Scholar
  168. 168.
    Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet. 1998;20:54–57.PubMedGoogle Scholar
  169. 169.
    Mousses S, McAuley L, Bell RS, Kandel R, Andrulis IL. Molecular and immunohistochemical identification of p53 alterations in bone and soft tissue sarcomas. Mod Pathol. 1996;9:1–6.PubMedGoogle Scholar
  170. 170.
    Mulligan LM, Matlashewski GJ, Scrable HJ, Cavenee WK. Mechanisms of p53 loss in human sarcomas. Proc Natl Acad Sci USA. 1990;87:5863–5867.PubMedGoogle Scholar
  171. 171.
    Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773–779.PubMedGoogle Scholar
  172. 172.
    Naka T, Iwamoto Y, Shinohara N, Ushijima M, Chuman H, Tsuneyoshi M. Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors. Mod Pathol. 1997;10:832–838.PubMedGoogle Scholar
  173. 173.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.PubMedGoogle Scholar
  174. 174.
    Nakayama T, Toguchida J, Wadayama B, Kanoe H, Kotoura Y, Sasaki MS. MDM2 gene amplification in bone and soft-tissue tumors: association with tumor progression in differentiated adipose-tissue tumors. Int J Cancer. 1995;64:342–346.PubMedGoogle Scholar
  175. 175.
    Nathrath MH, Kuosaite V, Rosemann M, Kremer M, Poremba C, Wakana S, Yanagi M, Nathrath WB, Hofler H, Imai K, Atkinson MJ. Two novel tumor suppressor gene loci on chromosome 6q and 15q in human osteosarcoma identified through comparative study of allelic imbalances in mouse and man. Oncogene. 2002;21:5975–5980.PubMedGoogle Scholar
  176. 176.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303:1483–1487.PubMedGoogle Scholar
  177. 177.
    Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18:3004–3016.PubMedGoogle Scholar
  178. 178.
    Nevins JR, Leone G, DeGregori J, Jakoi L. Role of the Rb/E2F pathway in cell growth control. J Cell Physiol. 1997;173:233–236.PubMedGoogle Scholar
  179. 179.
    Nielsen GP, Burns KL, Rosenberg AE, Louis DN. CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations. Am J Pathol. 1998;153:159–163.PubMedGoogle Scholar
  180. 180.
    Noble-Topham SE, Burrow SR, Eppert K, Kandel RA, Meltzer PS, Bell RS, Andrulis IL. SAS is amplified predominantly in surface osteosarcoma. J Orthop Res. 1996;14:700–705.PubMedGoogle Scholar
  181. 181.
    Nozaki K, Kadosawa T, Nishimura R, Mochizuki M, Takahashi K, Sasaki N. 1,25-Dihydroxyvitamin D3, recombinant human transforming growth factor-beta 1, and recombinant human bone morphogenetic protein-2 induce in vitro differentiation of canine osteosarcoma cells. J Vet Med Sci. 1999;61:649–656.PubMedGoogle Scholar
  182. 182.
    Nusse R. The Wnt gene family in tumorigenesis and in normal development. J Steroid Biochem Mol Biol. 1992;43:9–12.PubMedGoogle Scholar
  183. 183.
    Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15:28–32.PubMedGoogle Scholar
  184. 184.
    Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–83.PubMedGoogle Scholar
  185. 185.
    Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857–860.PubMedGoogle Scholar
  186. 186.
    Oliveira P, Nogueira M, Pinto A, Almeida MO. Analysis of p53 expression in osteosarcoma of the jaw: correlation with clinicopathologic and DNA ploidy findings. Hum Pathol. 1997;28:1361–1365.PubMedGoogle Scholar
  187. 187.
    Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765–771.PubMedGoogle Scholar
  188. 188.
    Park BH, Breyer B, He TC. Peroxisome proliferator-activated receptors: roles in tumorigenesis and chemoprevention in human cancer. Curr Opin Oncol. 2001;13:78–83.PubMedGoogle Scholar
  189. 189.
    Patel MS, Karsenty G. Regulation of bone formation and vision by LRP5. N Engl J Med. 2002;346:1572–1574.PubMedGoogle Scholar
  190. 190.
    Pedrocchi M, Schafer BW, Mueller H, Eppenberger U, Heizmann CW. Expression of Ca(2+)-binding proteins of the S100 family in malignant human breast-cancer cell lines and biopsy samples. Int J Cancer. 1994;57:684–690.PubMedGoogle Scholar
  191. 191.
    Perissinotto E, Cavalloni G, Leone F, Fonsato V, Mitola S, Grignani G, Surrenti N, Sangiolo D, Bussolino F, Piacibello W, Aglietta M. Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin Cancer Res. 2005;11(2 Pt 1):490–497.PubMedGoogle Scholar
  192. 192.
    Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell. 1998;92:713–723.PubMedGoogle Scholar
  193. 193.
    Pompetti F, Rizzo P, Simon RM, Freidlin B, Mew DJ, Pass HI, Picci P, Levine AS, Carbone M. Oncogene alterations in primary, recurrent, and metastatic human bone tumors. J Cell Biochem. 1996;63:37–50.PubMedGoogle Scholar
  194. 194.
    Porter DE, Holden ST, Steel CM, Cohen BB, Wallace MR, Reid R. A significant proportion of patients with osteosarcoma may belong to Li-Fraumeni cancer families. J Bone Joint Surg Br. 1992;74:883–886.PubMedGoogle Scholar
  195. 195.
    Postiglione L, Di Domenico G, Giordano-Lanza G, Ladogana P, Turano M, Castaldo C, Di Meglio F, Cocozza S, Montagnani S. Effect of human granulocyte macrophage-colony stimulating factor on differentiation and apoptosis of the human osteosarcoma cell line SaOS-2. Eur J Histochem. 2003;47:309–316.PubMedGoogle Scholar
  196. 196.
    Postiglione L, Domenico GD, Montagnani S, Spigna GD, Salzano S, Castaldo C, Ramaglia L, Sbordone L, Rossi G. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the osteoblastic differentiation of the human osteosarcoma cell line SaOS-2. Calcif Tissue Int. 2003;72:85–97.PubMedGoogle Scholar
  197. 197.
    Povelones M, Nusse R. Wnt signalling sees spots. Nat Cell Biol. 2002;4:E249–250.PubMedGoogle Scholar
  198. 198.
    Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000.PubMedGoogle Scholar
  199. 199.
    Radig K, Schneider-Stock R, Haeckel C, Neumann W, Roessner A. p53 gene mutations in osteosarcomas of low-grade malignancy. Hum Pathol. 1998;29:1310–1316.PubMedGoogle Scholar
  200. 200.
    Ragazzini P, Gamberi G, Benassi MS, Orlando C, Sestini R, Ferrari C, Molendini L, Sollazzo MR, Merli M, Magagnoli G, Bertoni F, Bohling T, Pazzagli M, Picci P. Analysis of SAS gene and CDK4 and MDM2 proteins in low-grade osteosarcoma. Cancer Detect Prev. 1999;23:129–136.PubMedGoogle Scholar
  201. 201.
    Rajgopal A, Young DW, Mujeeb KA, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Mitotic control of RUNX2 phosphorylation by both CDK1/cyclin B kinase and PP1/PP2A phosphatase in osteoblastic cells. J Cell Biochem. 2007;100:1509–1517.PubMedGoogle Scholar
  202. 202.
    Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP. Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res. 1994;54:4299–4303.PubMedGoogle Scholar
  203. 203.
    Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850.PubMedGoogle Scholar
  204. 204.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111.PubMedGoogle Scholar
  205. 205.
    Roberts WM, Douglass EC, Peiper SC, Houghton PJ, Look AT. Amplification of the gli gene in childhood sarcomas. Cancer Res. 1989;49:5407–5413.PubMedGoogle Scholar
  206. 206.
    Romano JW, Ehrhart JC, Duthu A, Kim CM, Appella E, May P. Identification and characterization of a p53 gene mutation in a human osteosarcoma cell line. Oncogene. 1989;4:1483–1488.PubMedGoogle Scholar
  207. 207.
    Rong S, Jeffers M, Resau JH, Tsarfaty I, Oskarsson M, Vande Woude GF. Met expression and sarcoma tumorigenicity. Cancer Res. 1993;53:5355–5360.PubMedGoogle Scholar
  208. 208.
    Ruther U, Komitowski D, Schubert FR, Wagner EF. c-fos expression induces bone tumors in transgenic mice. Oncogene. 1989;4:861–865.PubMedGoogle Scholar
  209. 209.
    Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. Eur J Surg Oncol. [Epub Jun 13 2007]. 2008;34:357–364.Google Scholar
  210. 210.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003;145:1–30.PubMedGoogle Scholar
  211. 211.
    Sangiorgi L, Gobbi GA, Lucarelli E, Sartorio SM, Mordenti M, Ghedini I, Maini V, Scrimieri F, Reggiani M, Bertoja AZ, Benassi MS, Picci P. Presence of telomerase activity in different musculoskeletal tumor histotypes and correlation with aggressiveness. Int J Cancer. 20 2001;95:156–161.Google Scholar
  212. 212.
    Scheel C, Schaefer KL, Jauch A, Keller M, Wai D, Brinkschmidt C, van Valen F, Boecker W, Dockhorn-Dworniczak B, Poremba C. Alternative lengthening of telomeres is associated with chromosomal instability in osteosarcomas. Oncogene. 2001;20:3835–3844.PubMedGoogle Scholar
  213. 213.
    Schmidt EE, Ichimura K, Reifenberger G, Collins VP. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 1994;54:6321–6324.PubMedGoogle Scholar
  214. 214.
    Schneider-Stock R, Radig K, Oda Y, Mellin W, Rys J, Niezabitowski A, Roessner A. p53 gene mutations in soft-tissue sarcomas–correlations with p53 immunohistochemistry and DNA ploidy. J Cancer Res Clin Oncol. 1997;123:211–218.PubMedGoogle Scholar
  215. 215.
    Scholz RB, Kabisch H, Weber B, Roser K, Delling G, Winkler K. Studies of the RB1 gene and the p53 gene in human osteosarcomas. Pediatr Hematol Oncol. 1992;9:125–137.PubMedGoogle Scholar
  216. 216.
    Scotlandi K, Baldini N, Oliviero M, Di Renzo MF, Martano M, Serra M, Manara MC, Comoglio PM, Ferracini R. Expression of Met/hepatocyte growth factor receptor gene and malignant behavior of musculoskeletal tumors. Am J Pathol. 1996;149:1209–1219.PubMedGoogle Scholar
  217. 217.
    Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004;51:1–28.PubMedGoogle Scholar
  218. 218.
    Shiratori H, Koshino T, Uesugi M, Nitto H, Saito T. Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice. Cancer Lett. 2001;170:177–182.PubMedGoogle Scholar
  219. 219.
    Siggelkow H, Schenck M, Rohde M, Viereck V, Tauber S, Atkinson MJ, Hufner M. Prolonged culture of HOS 58 human osteosarcoma cells with 1,25-(OH)2-D3, TGF-beta, and dexamethasone reveals physiological regulation of alkaline phosphatase, dissociated osteocalcin gene expression, and protein synthesis and lack of mineralization. J Cell Biochem. 2002;85:279–294.PubMedGoogle Scholar
  220. 220.
    Simons A, Schepens M, Forus A, Godager L, van Asseldonk M, Myklebost O, van Kessel AG. A novel chromosomal region of allelic loss, 4q32-q34, in human osteosarcomas revealed by representational difference analysis. Genes Chromosomes Cancer. 1999;26:115–124.PubMedGoogle Scholar
  221. 221.
    Smith-Sorensen B, Gebhardt MC, Kloen P, McIntyre J, Aguilar F, Cerutti P, Borresen AL. Screening for TP53 mutations in osteosarcomas using constant denaturant gel electrophoresis (CDGE). Hum Mutat. 1993;2:274–285.PubMedGoogle Scholar
  222. 222.
    Sparks AB, Peterson SN, Bell C, Loftus BJ, Hocking L, Cahill DP, Frassica FJ, Streeten EA, Levine MA, Fraser CM, Adams MD, Broder S, Venter JC, Kinzler KW, Vogelstein B, Ralston SH. Mutation screening of the TNFRSF11A gene encoding receptor activator of NF kappa B (RANK) in familial and sporadic Paget’s disease of bone and osteosarcoma. Calcif Tissue Int. 2001;68:151–155.PubMedGoogle Scholar
  223. 223.
    Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747–749.PubMedGoogle Scholar
  224. 224.
    Stein U, Eder C, Karsten U, Haensch W, Walther W, Schlag PM. GLI gene expression in bone and soft tissue sarcomas of adult patients correlates with tumor grade. Cancer Res. 1999;59:1890–1895.PubMedGoogle Scholar
  225. 225.
    Su YA, Hutter CM, Trent JM, Meltzer PS. Complete sequence analysis of a gene (OS-9) ubiquitously expressed in human tissues and amplified in sarcomas. Mol Carcinog. 1996;15:270–275.PubMedGoogle Scholar
  226. 226.
    Su YA, Lee MM, Hutter CM, Meltzer PS. Characterization of a highly conserved gene (OS4) amplified with CDK4 in human sarcomas. Oncogene. 1997;15:1289–1294.PubMedGoogle Scholar
  227. 227.
    Sztan M, Papai Z, Szendroi M, Looij M, Olah E. Allelic losses from chromosome 17 in human osteosarcomas. Pathol Oncol Res. 1997;3:115–120.PubMedCrossRefGoogle Scholar
  228. 228.
    Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62:1832–1837.PubMedGoogle Scholar
  229. 229.
    Takeda S, Elefteriou F, Karsenty G. Common endocrine control of body weight, reproduction, and bone mass. Annu Rev Nutr. 2003;23:403–411.PubMedGoogle Scholar
  230. 230.
    Takeda S, Karsenty G. Central control of bone formation. J Bone Miner Metab. 2001;19:195–198.PubMedGoogle Scholar
  231. 231.
    Thomas D, Kansara M. Epigenetic modifications in osteogenic differentiation and transformation. J Cell Biochem. 2006;98:757–769.PubMedGoogle Scholar
  232. 232.
    Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, Hinds PW. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell. 2001;8:303–316.PubMedGoogle Scholar
  233. 233.
    Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP, Waring P, McArthur GA, Walkley CR, Holloway AJ, Diyagama D, Grim JE, Clurman BE, Bowtell DD, Lee JS, Gutierrez GM, Piscopo DM, Carty SA, Hinds PW. Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol. 2004;167:925–934.PubMedGoogle Scholar
  234. 234.
    Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell. 2007;11:421–429.PubMedGoogle Scholar
  235. 235.
    Toguchida J, Ishizaki K, Sasaki MS, Ikenaga M, Sugimoto M, Kotoura Y, Yamamuro T. Chromosomal reorganization for the expression of recessive mutation of retinoblastoma susceptibility gene in the development of osteosarcoma. Cancer Res. 1988;48:3939–3943.PubMedGoogle Scholar
  236. 236.
    Toguchida J, Yamaguchi T, Dayton SH, Beauchamp RL, Herrera GE, Ishizaki K, Yamamuro T, Meyers PA, Little JB, Sasaki MS, et al. Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. N Engl J Med. 1992;326:1301–1308.PubMedGoogle Scholar
  237. 237.
    Toguchida J, Yamaguchi T, Ritchie B, Beauchamp RL, Dayton SH, Herrera GE, Yamamuro T, Kotoura Y, Sasaki MS, Little JB, et al. Mutation spectrum of the p53 gene in bone and soft tissue sarcomas. Cancer Res. 1992;52:6194–6199.PubMedGoogle Scholar
  238. 238.
    Torchia EC, Jaishankar S, Baker SJ. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res. 2003;63:3464–3468.PubMedGoogle Scholar
  239. 239.
    Tucker MA, D’Angio GJ, Boice JD Jr, Strong LC, Li FP, Stovall M, Stone BJ, Green DM, Lombardi F, Newton W, et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med. 1987;317:588–593.PubMedGoogle Scholar
  240. 240.
    Uchibori M, Nishida Y, Nagasaka T, Yamada Y, Nakanishi K, Ishiguro N. Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol. 2006;28:33–42.PubMedGoogle Scholar
  241. 241.
    Ueda Y, Dockhorn-Dworniczak B, Blasius S, Mellin W, Wuisman P, Bocker W, Roessner A. Analysis of mutant P53 protein in osteosarcomas and other malignant and benign lesions of bone. J Cancer Res Clin Oncol. 1993;119:172–178.PubMedGoogle Scholar
  242. 242.
    Ulaner GA, Huang HY, Otero J, Zhao Z, Ben-Porat L, Satagopan JM, Gorlick R, Meyers P, Healey JH, Huvos AG, Hoffman AR, Ladanyi M. Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res. 2003;63:1759–1763.PubMedGoogle Scholar
  243. 243.
    van Dartel M, Cornelissen PW, Redeker S, Tarkkanen M, Knuutila S, Hogendoorn PC, Westerveld A, Gomes I, Bras J, Hulsebos TJ. Amplification of 17p11.2 approximately p12, including PMP22, TOP3A, and MAPK7, in high-grade osteosarcoma. Cancer Genet Cytogenet. 2002;139:91–96.PubMedGoogle Scholar
  244. 244.
    van Dartel M, Hulsebos TJ. Characterization of PMP22 expression in osteosarcoma. Cancer Genet Cytogenet. 2004;152:113–118.PubMedGoogle Scholar
  245. 245.
    van Deursen JM. Rb loss causes cancer by driving mitosis mad. Cancer Cell. 2007;11:1–3.PubMedGoogle Scholar
  246. 246.
    van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev. 2003;13:28–33.PubMedGoogle Scholar
  247. 247.
    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–310.PubMedGoogle Scholar
  248. 248.
    Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki MS, Kotoura Y, Yamamuro T. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 1994;54:3042–3048.PubMedGoogle Scholar
  249. 249.
    Wadayama B, Toguchida J, Yamaguchi T, Sasaki MS, Yamamuro T. p53 expression and its relationship to DNA alterations in bone and soft tissue sarcomas. Br J Cancer. 1993;68:1134–1139.PubMedGoogle Scholar
  250. 250.
    Wagner EF, Karsenty G. Genetic control of skeletal development. Curr Opin Genet Dev. 2001;11:527–532.PubMedGoogle Scholar
  251. 251.
    Wan X, Mendoza A, Khanna C, Helman LJ. Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res. 2005;65:2406–2411.PubMedGoogle Scholar
  252. 252.
    Wang LL. Biology of osteogenic sarcoma. Cancer J. 2005;11:294–305.PubMedGoogle Scholar
  253. 253.
    Wang LL, Gannavarapu A, Kozinetz CA, Levy ML, Lewis RA, Chintagumpala MM, Ruiz-Maldanado R, Contreras-Ruiz J, Cunniff C, Erickson RP, Lev D, Rogers M, Zackai EH, Plon SE. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003;95:669–674.PubMedCrossRefGoogle Scholar
  254. 254.
    Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, Rogers M, Plon SE. Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet. 2001;102:11–17.PubMedGoogle Scholar
  255. 255.
    Wang ZQ, Liang J, Schellander K, Wagner EF, Grigoriadis AE. c-fos-induced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos. Cancer Res. 1995;55:6244–6251.PubMedGoogle Scholar
  256. 256.
    Weatherby RP, Dahlin DC, Ivins JC. Postradiation sarcoma of bone: review of 78 Mayo Clinic cases. Mayo Clin Proc. 1981;56:294–306.PubMedGoogle Scholar
  257. 257.
    Wei G, Lonardo F, Ueda T, Kim T, Huvos AG, Healey JH, Ladanyi M. CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. Int J Cancer. 1999;80:199–204.PubMedGoogle Scholar
  258. 258.
    Weiss KR, Cooper GM, Jadlowiec JA, McGough RL 3rd, Huard J. VEGF and BMP expression in mouse osteosarcoma cells. Clin Orthop Relat Res. 2006;450:111–117.PubMedGoogle Scholar
  259. 259.
    Whelan JS. Osteosarcoma. Eur J Cancer. 1997;33:1611–1618; discussion 1618–1619.PubMedGoogle Scholar
  260. 260.
    Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66:1883–1890; discussion 1895–1886.PubMedGoogle Scholar
  261. 261.
    Wilkie AO, Patey SJ, Kan SH, van den Ouweland AM, Hamel BC. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. Am J Med Genet. 2002;112:266–278.PubMedGoogle Scholar
  262. 262.
    Willert K, Nusse R. Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev. 1998;8:95–102.PubMedGoogle Scholar
  263. 263.
    Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell. 2006;10:771–782.PubMedGoogle Scholar
  264. 264.
    Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.PubMedGoogle Scholar
  265. 265.
    Wolf M, El-Rifai W, Tarkkanen M, Kononen J, Serra M, Eriksen EF, Elomaa I, Kallioniemi A, Kallioniemi OP, Knuutila S. Novel findings in gene expression detected in human osteosarcoma by cDNA microarray. Cancer Genet Cytogenet. 2000;123:128–132.PubMedGoogle Scholar
  266. 266.
    Wu JX, Carpenter PM, Gresens C, Keh R, Niman H, Morris JW, Mercola D. The proto-oncogene c-fos is over-expressed in the majority of human osteosarcomas. Oncogene. 1990;5:989–1000.PubMedGoogle Scholar
  267. 267.
    Wunder JS, Czitrom AA, Kandel R, Andrulis IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst. 1991;83:194–200.PubMedGoogle Scholar
  268. 268.
    Wunder JS, Eppert K, Burrow SR, Gokgoz N, Bell RS, Andrulis IL. Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene. 1999;18:783–788.PubMedGoogle Scholar
  269. 269.
    Wuyts W, Van Wesenbeeck L, Morales-Piga A, Ralston S, Hocking L, Vanhoenacker F, Westhovens R, Verbruggen L, Anderson D, Hughes A, Van Hul W. Evaluation of the role of RANK and OPG genes in Paget’s disease of bone. Bone. 2001;28:104–107.PubMedGoogle Scholar
  270. 270.
    Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000;21:393–411.PubMedGoogle Scholar
  271. 271.
    Yamaguchi T, Toguchida J, Yamamuro T, Kotoura Y, Takada N, Kawaguchi N, Kaneko Y, Nakamura Y, Sasaki MS, Ishizaki K. Allelotype analysis in osteosarcomas: frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res. 1992;52:2419–2423.PubMedGoogle Scholar
  272. 272.
    Yan P, Coindre JM, Benhattar J, Bosman FT, Guillou L. Telomerase activity and human telomerase reverse transcriptase mRNA expression in soft tissue tumors: correlation with grade, histology, and proliferative activity. Cancer Res. 1999;59:3166–3170.PubMedGoogle Scholar
  273. 273.
    Yang X, Karsenty G. ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J Biol Chem. 2004;279:47109–47114.PubMedGoogle Scholar
  274. 274.
    Yokoyama R, Schneider-Stock R, Radig K, Wex T, Roessner A. Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumors. Pathol Res Pract. 1998;194:615–621.PubMedGoogle Scholar
  275. 275.
    Yoshikawa H, Nakase T, Myoui A, Ueda T. Bone morphogenetic proteins in bone tumors. J Orthop Sci. 2004;9:334–340.PubMedGoogle Scholar
  276. 276.
    Yotov WV, Hamel H, Rivard GE, Champagne MA, Russo PA, Leclerc JM, Bernstein ML, Levy E. Amplifications of DNA primase 1 (PRIM1) in human osteosarcoma. Genes Chromosomes Cancer. 1999;26:62–69.PubMedGoogle Scholar
  277. 277.
    Zenmyo M, Komiya S, Hamada T, Hiraoka K, Kato S, Fujii T, Yano H, Irie K, Nagata K. Transcriptional activation of p21 by vitamin D(3) or vitamin K(2) leads to differentiation of p53-deficient MG-63 osteosarcoma cells. Hum Pathol. 2001;32:410–416.PubMedGoogle Scholar
  278. 278.
    Zhang M, Rosen JM. Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev. 2006;16:60–64.PubMedGoogle Scholar
  279. 279.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–734.PubMedGoogle Scholar
  280. 280.
    Zhao GQ. Consequences of knocking out BMP signaling in the mouse. Genesis. 2003;35:43–56.PubMedGoogle Scholar
  281. 281.
    Zhou H, Randall RL, Brothman AR, Maxwell T, Coffin CM, Goldsby RE. Her-2/neu expression in osteosarcoma increases risk of lung metastasis and can be associated with gene amplification. J Pediatr Hematol Oncol. 2003;25:27–32.PubMedGoogle Scholar
  282. 282.
    Zou H, Choe KM, Lu Y, Massague J, Niswander L. BMP signaling and vertebrate limb development. Cold Spring Harb Symp Quant Biol. 1997;62:269–272.PubMedGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons 2008

Authors and Affiliations

  • Ni Tang
    • 1
    • 2
  • Wen-Xin Song
    • 2
  • Jinyong Luo
    • 1
    • 2
  • Rex C. Haydon
    • 2
  • Tong-Chuan He
    • 1
    • 2
  1. 1.The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
  2. 2.Molecular Oncology Laboratory, Department of SurgeryThe University of Chicago Medical CenterChicagoUSA

Personalised recommendations