Clinical Orthopaedics and Related Research

, Volume 466, Issue 8, pp 1777–1787 | Cite as

A Perspective: Engineering Periosteum for Structural Bone Graft Healing

  • Xinping ZhangEmail author
  • Hani A. Awad
  • Regis J. O’Keefe
  • Robert E. Guldberg
  • Edward M. Schwarz
Symposium: New Approaches to Allograft Transplantation


Autograft is superior to both allograft and synthetic bone graft in repair of large structural bone defect largely due to the presence of multipotent mesenchymal stem cells in periosteum. Recent studies have provided further evidence that activation, expansion and differentiation of the donor periosteal progenitor cells are essential for the initiation of osteogenesis and angiogenesis of donor bone graft healing. The formation of donor cell-derived periosteal callus enables efficient host-dependent graft repair and remodeling at the later stage of healing. Removal of periosteum from bone autograft markedly impairs healing whereas engraftment of multipotent mesenchymal stem cells on bone allograft improves healing and graft incorporation. These studies provide rationale for fabrication of a biomimetic periosteum substitute that could fit bone of any size and shape for enhanced allograft healing and repair. The success of such an approach will depend on further understanding of the molecular signals that control inflammation, cellular recruitment as well as mesenchymal stem cell differentiation and expansion during the early phase of the repair process. It will also depend on multidisciplinary collaborations between biologists, material scientists and bioengineers to address issues of material selection and modification, biological and biomechanical parameters for functional evaluation of bone allograft healing.


Mesenchymal Stem Cell Bone Graft Bone Repair Bone Allograft Graft Healing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Kimberly Napoli for her help in editing the manuscript.


  1. 1.
    Abe Y, Takahata M, Ito M, Irie K, Abumi K, Minami A. Enhancement of graft bone healing by intermittent administration of human parathyroid hormone (1–34) in a rat spinal arthrodesis model. Bone. 2007;41:775–785.PubMedGoogle Scholar
  2. 2.
    Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone. 2004; 35:1003–1012.PubMedGoogle Scholar
  3. 3.
    Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1–34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14:960–968.PubMedGoogle Scholar
  4. 4.
    Ashammakhi N, Ndreu A, Piras A, Nikkola L, Sindelar T, Ylikauppila H, Harlin A, Chiellini E, Hasirci V, Redl H. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol. 2006;6:2693–2711.PubMedGoogle Scholar
  5. 5.
    Augustin G, Antabak A, Davila S. The periosteum Part 1: Anatomy, histology and molecular biology. Injury. 2007;38:1115–1130.PubMedGoogle Scholar
  6. 6.
    Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000;371:10–27.PubMedGoogle Scholar
  7. 7.
    Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432:324–331.PubMedGoogle Scholar
  8. 8.
    Berrey BH Jr, Lord CF, Gebhardt MC, Mankin HJ. Fractures of allografts. Frequency, treatment, and end-results. J Bone Joint Surg Am. 1990;72:825–833.PubMedGoogle Scholar
  9. 9.
    Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180–192.PubMedGoogle Scholar
  10. 10.
    Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414:118–121.PubMedGoogle Scholar
  11. 11.
    Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res. 1995;13:357–367.PubMedGoogle Scholar
  12. 12.
    Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983;174:28–42.PubMedGoogle Scholar
  13. 13.
    Burchardt H. Biology of bone transplantation. Orthop Clin North Am. 1987;18:187–196.PubMedGoogle Scholar
  14. 14.
    Burchardt H, Enneking WF. Transplantation of bone. Surg Clin North Am. 1978;58:403–427.PubMedGoogle Scholar
  15. 15.
    Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007;28:4240–4250.PubMedGoogle Scholar
  16. 16.
    Caplan AI. In vivo remodeling. Ann NY Acad Sci. 2002;961:307–308.PubMedCrossRefGoogle Scholar
  17. 17.
    Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355 Suppl:S41–55.PubMedGoogle Scholar
  18. 18.
    Davy DT. Biomechanical issues in bone transplantation. Orthop Clin North Am. 1999;30:553–563.PubMedGoogle Scholar
  19. 19.
    Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev. 2008;60:215–228.PubMedGoogle Scholar
  20. 20.
    Delloye C, Simon P, Nyssen-Behets C, Banse X, Bresler F, Schmitt D. Perforations of cortical bone allografts improve their incorporation. Clin Orthop Relat. Res. 2002;396:240–247.PubMedGoogle Scholar
  21. 21.
    Duvall CL, Robert Taylor W, Weiss D, Guldberg RE. Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol. 2004;287:H302–310.PubMedGoogle Scholar
  22. 22.
    Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am. 2001;83:971–986.PubMedGoogle Scholar
  23. 23.
    Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73:1123–1142.PubMedGoogle Scholar
  24. 24.
    Eyre-Brook AL. The periosteum: its function reassessed. Clin Orthop Relat Res. 1984;189:300–307.Google Scholar
  25. 25.
    Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev. 1999;87:57–66.PubMedGoogle Scholar
  26. 26.
    Fox EJ, Hau MA, Gebhardt MC, Hornicek FJ, Tomford WW, Mankin HJ. Long-term followup of proximal femoral allografts. Clin OrthopRelat Res. 2002;397:106–113.Google Scholar
  27. 27.
    Garbuz DS, Masri BA, Czitrom AA. Biology of allografting. Orthop Clin North Am. 1998;29:199–204.PubMedGoogle Scholar
  28. 28.
    Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–628.PubMedGoogle Scholar
  29. 29.
    Goldberg VM, Stevenson S. The biology of bone grafts. Semin Arthroplasty. 1993;4:58–63.PubMedGoogle Scholar
  30. 30.
    Gray JC, Elves MW. Donor cells’ contribution to osteogenesis in experimental cancellous bone grafts. Clin Orthop Relat Res. 1982;163:261–271.PubMedGoogle Scholar
  31. 31.
    Griffith LG, Naughton G. Tissue engineering–current challenges and expanding opportunities. Science. 2002;295:1009–1014.PubMedGoogle Scholar
  32. 32.
    Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology. 2004;41:389–399.PubMedGoogle Scholar
  33. 33.
    Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, Oest M, Phillips J, Porter BD, Robertson G, Taylor WR. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag. 2003;22:77–83.PubMedGoogle Scholar
  34. 34.
    Guldberg RE, Oest M, Lin AS, Ito H, Chao X, Gromov K, Goater JJ, Koefoed M, Schwarz EM, O’Keefe RJ, Zhang X. Functional integration of tissue-engineered bone constructs. J Musculoskelet Neuronal Interact. 2004;4:399–400.PubMedGoogle Scholar
  35. 35.
    Hashimoto T, Shigetomi M, Ohno T, Matsunaga T, Muramatsu K, Tanaka H, Sugiyama T, Taguchi T. Sequential treatment with intermittent low-dose human parathyroid hormone (1–34) and bisphosphonate enhances large-size skeletal reconstruction by vascularized bone transplantation. Calcif Tissue Int. 2007;81:232–239.PubMedGoogle Scholar
  36. 36.
    Hee CK, Jonikas MA, Nicoll SB. Influence of three-dimensional scaffold on the expression of osteogenic differentiation markers by human dermal fibroblasts. Biomaterials. 2006;27:875–884.PubMedGoogle Scholar
  37. 37.
    Herschman HR. Prostaglandin synthase 2. Biochem. Biophys. Acta. 1996;1229:125–140.Google Scholar
  38. 38.
    Hirata K, Tsukazaki T, Kadowaki A, Furukawa K, Shibata Y, Moriishi T, Okubo Y, Bessho K, Komori T, Mizuno A, Yamaguchi A. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone. 2003;32:502–512.PubMedGoogle Scholar
  39. 39.
    Ho ML, Chang JK, Wang GJ. Effects of ketorolac on bone repair: A radiographic study in modeled demineralized bone matrix grafted rabbits. Pharmacology. 1998;57:148–159.PubMedGoogle Scholar
  40. 40.
    Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng. 2003;9 Suppl 1:S45–64.PubMedGoogle Scholar
  41. 41.
    Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW. Localization of chondrocyte precursors in periosteum. Osteoarthritis Cartilage. 2001;9:215–223.PubMedGoogle Scholar
  42. 42.
    Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S. Recent advances in polymer nanofibers. J Nanosci Nanotechnol. 2004;4:52–65.PubMedGoogle Scholar
  43. 43.
    Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, Toben D, Jacobsen KA, Al-Sebaei MO, Song M, Trackman PC, Morgan EF, Gerstenfeld LC, Barnes GL. Enhanced chondrogenesis and Wnt-signaling in parathyroid hormone treated fractures. J Bone Miner Res. 2007;22:1903–1912.PubMedGoogle Scholar
  44. 44.
    Kandziora F, Pflugmacher R, Scholz M, Knispel C, Hiller T, Schollmeier G, Bail H, Schmidmaier G, Duda G, Raschke M, Haas NP. Comparison of BMP-2 and combined IGF-I/TGF-ss1 application in a sheep cervical spine fusion model. Eur Spine J. 2002;11:482–493.PubMedGoogle Scholar
  45. 45.
    Kim HW, Jahng JS. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Iowa Orthop J. 1999;19:71–77.PubMedGoogle Scholar
  46. 46.
    Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng. 2006;12:221–233.PubMedGoogle Scholar
  47. 47.
    King KF. Periosteal pedicle grafting in dogs. J Bone Joint Surg Br. 1976;58:117–121.PubMedGoogle Scholar
  48. 48.
    Knothe Tate ML, Ritzman TF, Schneider E, Knothe UR. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am. 2007;89:307–316.PubMedGoogle Scholar
  49. 49.
    Kostopoulos L, Karring T. Role of periosteum in the formation of jaw bone. An experiment in the rat. J Clin Periodontol. 1995;22:247–254.PubMedGoogle Scholar
  50. 50.
    Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther. 2000;11:1201–1210.PubMedGoogle Scholar
  51. 51.
    Le AX, Miclau T, Hu D, Helms JA. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res. 2001;19:78–84.PubMedGoogle Scholar
  52. 52.
    Leunig M, Demhartner TJ, Sckell A, Fraitzl CR, Gries N, Schenk RK, Ganz R. Quantitative assessment of angiogenesis and osteogenesis after transplantation of bone: comparison of isograft and allograft bone in mice. Acta Orthop Scand. 1999;70:374–380.PubMedCrossRefGoogle Scholar
  53. 53.
    Leunig M, Yuan F, Berk DA, Gerweck LE, Jain RK. Angiogenesis and growth of isografted bone: quantitative in vivo assay in nude mice. Lab Invest. 1994;71:300–307.PubMedGoogle Scholar
  54. 54.
    Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg Am. 1988;70:369–376.PubMedGoogle Scholar
  55. 55.
    Ma T, Gutnick J, Salazar B, Larsen MD, Suenaga E, Zilber S, Huang Z, Huddleston J, Smith RL, Goodman S. Modulation of allograft incorporation by continuous infusion of growth factors over a prolonged duration in vivo. Bone. 2007;41:386–392.PubMedGoogle Scholar
  56. 56.
    Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101–109.PubMedGoogle Scholar
  57. 57.
    Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron. 2003;39:937–950.PubMedGoogle Scholar
  58. 58.
    Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D, Civitelli R. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005;94:403–418.PubMedGoogle Scholar
  59. 59.
    Muramatsu K, Bishop AT. Cell repopulation in vascularized bone grafts. J Orthop Res. 2002;20:772–778.PubMedGoogle Scholar
  60. 60.
    Muramatsu K, Valenzuela RG, Bishop AT. Detection of chimerism following vascularized bone allotransplantation by polymerase chain reaction using a Y-chromosome specific primer. J Orthop Res. 2003;21:1056–1062.PubMedGoogle Scholar
  61. 61.
    Nakahara H, Bruder SP, Goldberg VM, Caplan AI. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res. 1990;259:223–232.PubMedGoogle Scholar
  62. 62.
    Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, Caplan AI. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone. 1990;11:181–188.PubMedGoogle Scholar
  63. 63.
    Nakahara H, Goldberg VM, Caplan AI. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res. 1991;9:465–476.PubMedGoogle Scholar
  64. 64.
    Nakazawa T, Nakajima A, Shiomi K, Moriya H, Einhorn TA, Yamazaki M. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1–34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005;37:711–719.PubMedGoogle Scholar
  65. 65.
    O’Driscoll SW, Fitzsimmons JS. The role of periosteum in cartilage repair. Clin Orthop Relat Res. 2001;391 Suppl:S190–207.PubMedGoogle Scholar
  66. 66.
    Okazaki K, Jingushi S, Ikenoue T, Urabe K, Sakai H, Iwamoto Y. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res. 2003;21:511–520.PubMedGoogle Scholar
  67. 67.
    O’Keefe RJ, Tiyapatanaputi P, Xie C, Li TF, Clark C, Zuscik MJ, Chen D, Drissi H, Schwarz E, Zhang X. COX-2 has a critical role during incorporation of structural bone allografts. Ann NY Acad Sci. 2006;1068:532–542.PubMedGoogle Scholar
  68. 68.
    Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18:949–954.PubMedGoogle Scholar
  69. 69.
    Ouyang HW, Cao T, Zou XH, Heng BC, Wang LL, Song XH, Huang HF. Mesenchymal stem cell sheets revitalize nonviable dense grafts: implications for repair of large-bone and tendon defects. Transplantation. 2006;82:170–174.PubMedGoogle Scholar
  70. 70.
    Owen GR, Jackson J, Chehroudi B, Burt H, Brunette DM. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials. 2005;26:7447–7456.PubMedGoogle Scholar
  71. 71.
    Park KE, Kang HK, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules. 2006;7:635–643.PubMedGoogle Scholar
  72. 72.
    Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest. 2002;110:751–759.PubMedGoogle Scholar
  73. 73.
    Phillips JE, Guldberg RE, Garcia AJ. Dermal fibroblasts genetically modified to express Runx2/Cbfa1 as a mineralizing cell source for bone tissue engineering. Tissue Eng. 2007;13:2029–2040.PubMedGoogle Scholar
  74. 74.
    Phillips JE, Hutmacher DW, Guldberg RE, Garcia AJ. Mineralization capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials. 2006;27:5535–5545.PubMedGoogle Scholar
  75. 75.
    Reynolds DG, Hock C, Shaikh S, Jacobson J, Zhang X, Rubery PT, Beck CA, O’Keefe RJ, Lerner AL, Schwarz EM, Awad HA. Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts. J Biomech. 2007;40:3178–3186.PubMedGoogle Scholar
  76. 76.
    Rutherford RB, Moalli M, Franceschi RT, Wang D, Gu K, Krebsbach PH. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng. 2002;8:441–452.PubMedGoogle Scholar
  77. 77.
    Sandell LJ, Adler P. Developmental patterns of cartilage. Front Biosci. 1999;4:D731–742.PubMedGoogle Scholar
  78. 78.
    Shefelbine SJ, Augat P, Claes L, Simon U. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech. 2005;38:2440–2450.PubMedGoogle Scholar
  79. 79.
    Shefelbine SJ, Simon U, Claes L, Gold A, Gabet Y, Bab I, Muller R, Augat P. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone. 2005;36:480–488.PubMedGoogle Scholar
  80. 80.
    Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells. 2006;24:2391–2397.PubMedGoogle Scholar
  81. 81.
    Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials. 2005;26:137–146.PubMedGoogle Scholar
  82. 82.
    Simon AM, Manigrasso MB, O’Connor JP. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002;17:963–976.PubMedGoogle Scholar
  83. 83.
    Srouji S, Blumenfeld I, Rachmiel A, Livne E. Bone defect repair in rat tibia by TGF-beta1 and IGF-1 released from hydrogel scaffold. Cell Tissue Bank. 2004;5:223–230.PubMedGoogle Scholar
  84. 84.
    Stankus JJ, Guan J, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials. 2006;27:735–744.PubMedGoogle Scholar
  85. 85.
    Stevenson S. Biology of bone grafts. Orthop Clin North Am. 1999;30:543–552.PubMedGoogle Scholar
  86. 86.
    Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res. 1996;324:66–74.PubMedGoogle Scholar
  87. 87.
    Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;99:9656–9661.PubMedGoogle Scholar
  88. 88.
    Sudmann E, Hagen T. Indomethacin-induced delayed fracture healing. Arch Orthop Unfallchir. 1976;85:151–154.PubMedGoogle Scholar
  89. 89.
    Takeda K, Gosiewska A, Peterkofsky B. Similar, but not identical, modulation of expression of extracellular matrix components during in vitro and in vivo aging of human skin fibroblasts. J Cell Physiol. 1992;153:450–459.PubMedGoogle Scholar
  90. 90.
    Tencer A, Johnson K. Biomechanics in Orthopaedic Trauma. Philadelphia PA: JB Lippincott; 1994:109.Google Scholar
  91. 91.
    Tiyapatanaputi P, Rubery PT, Carmouche J, Schwarz EM, O’Keefe RJ, Zhang X. A novel murine segmental femoral graft model. J Orthop Res. 2004;22:1254–1260.PubMedGoogle Scholar
  92. 92.
    Tomford WW, Mankin HJ. Bone banking. Update on methods and materials. Orthop Clin North Am. 1999;30:565–570.PubMedGoogle Scholar
  93. 93.
    Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–1429.PubMedGoogle Scholar
  94. 94.
    Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–235.PubMedGoogle Scholar
  95. 95.
    Wheeler DL, Haynie JL, Berrey H, Scarborough M, Enneking W. Biomechanical evaluation of retrieved massive allografts: preliminary results. Biomed Sci Instrum. 2001;37:251–256.PubMedGoogle Scholar
  96. 96.
    Whitfield JF. How to grow bone to treat osteoporosis and mend fractures. Curr Rheumatol Rep. 2003;5:45–56.PubMedGoogle Scholar
  97. 97.
    Wlodarski KH. Normal and heterotopic periosteum. Clin Orthop Relat Res. 1989;241:265–277.PubMedGoogle Scholar
  98. 98.
    Xie C, Reynolds D, Awad H, Rubery PT, Pelled G, Gazit D, Guldberg RE, Schwarz EM, O’Keefe RJ, Zhang X. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng. 2007;13:435–445.PubMedGoogle Scholar
  99. 99.
    Yuasa T, Kataoka H, Kinto N, Iwamoto M, Enomoto-Iwamoto M, Iemura S, Ueno N, Shibata Y, Kurosawa H, Yamaguchi A. Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. J Cell Physiol. 2002;193:225–232.PubMedGoogle Scholar
  100. 100.
    Zhang J, Li L. Stem cell niche - Microenvironment and beyond. J Biol Chem. 2008;283(15):9499–9503.PubMedGoogle Scholar
  101. 101.
    Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 2002;109:1405–1415.PubMedGoogle Scholar
  102. 102.
    Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe RJ, Guldberg RE. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res. 2005;20:2124–2137.PubMedGoogle Scholar
  103. 103.
    Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM, Hutmacher DW. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials. 2007;28:814–824.PubMedGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons 2008

Authors and Affiliations

  • Xinping Zhang
    • 1
    Email author
  • Hani A. Awad
    • 1
  • Regis J. O’Keefe
    • 1
  • Robert E. Guldberg
    • 2
  • Edward M. Schwarz
    • 1
  1. 1.The Center for Musculoskeletal ResearchUniversity of Rochester Medical Center, School of Medicine and DentistryRochesterUSA
  2. 2.George W. Woodruff School of Mechanical EngineeringParker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations