Clinical Orthopaedics and Related Research

, Volume 466, Issue 8, pp 1938–1948 | Cite as

Mechanoactive Scaffold Induces Tendon Remodeling and Expression of Fibrocartilage Markers

  • Jeffrey P. Spalazzi
  • Moira C. Vyner
  • Matthew T. Jacobs
  • Kristen L. Moffat
  • Helen H. LuEmail author
Symposium: New Approaches to Allograft Transplantation


Biological fixation of soft tissue-based grafts for anterior cruciate ligament (ACL) reconstruction poses a major clinical challenge. The ACL integrates with subchondral bone through a fibrocartilage enthesis, which serves to minimize stress concentrations and enables load transfer between two distinct tissue types. Functional integration thus requires the reestablishment of this fibrocartilage interface on reconstructed ACL grafts. We designed and characterized a novel mechanoactive scaffold based on a composite of poly-α-hydroxyester nanofibers and sintered microspheres; we then used the scaffold to test the hypothesis that scaffold-induced compression of tendon grafts would result in matrix remodeling and the expression of fibrocartilage interface-related markers. Histology coupled with confocal microscopy and biochemical assays were used to evaluate the effects of scaffold-induced compression on tendon matrix collagen distribution, cellularity, proteoglycan content, and gene expression over a 2-week period. Scaffold contraction resulted in over 15% compression of the patellar tendon graft and upregulated the expression of fibrocartilage-related markers such as Type II collagen, aggrecan, and transforming growth factor-β3 (TGF-β3). Additionally, proteoglycan content was higher in the compressed tendon group after 1 day. The data suggest the potential of a mechanoactive scaffold to promote the formation of an anatomic fibrocartilage enthesis on tendon-based ACL reconstruction grafts.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Tendon Graft Anterior Cruciate Ligament Graft Hamstring Tendon Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Ms. Ciji Rich of the Biomaterials and Interface Tissue Engineering Laboratory at Columbia University for assistance in quantifying nanofiber mesh contraction, as well as Dr. X. Edward Guo of Columbia University for the use of the polarized light microscope for imaging collagen organization.


  1. 1.
    Allum RL. BASK Instructional Lecture 1: graft selection in anterior cruciate ligament reconstruction. Knee. 2001;8:69–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Arthroplastyand total joint replacement procedures: United States 1990 to 1997. American Academy of Orthopaedic Surgeons; 2000.Google Scholar
  3. 3.
    Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. J Anat. 1986;149:89–100.PubMedGoogle Scholar
  4. 4.
    Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments–an adaptation to compressive load. J Anat. 1998;193:481–494.PubMedCrossRefGoogle Scholar
  5. 5.
    Berg EE. Autograft bone-patella tendon-bone plug comminution with loss of ligament fixation and stability. Arthroscopy. 1996;12:232–235.PubMedGoogle Scholar
  6. 6.
    Beynnon B, Yu J, Huston D, Fleming B, Johnson R, Haugh L, Pope MH. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. J Biomech Eng. 1996;118:227–239.PubMedCrossRefGoogle Scholar
  7. 7.
    Beynnon BD, Johnson RJ, Fleming BC, Peura GD, Renstrom PA, Nichols CE, Pope MH. The effect of functional knee bracing on the anterior cruciate ligament in the weightbearing and nonweightbearing knee. Am J Sports Med. 1997;25:353–359.PubMedCrossRefGoogle Scholar
  8. 8.
    Beynnon BD, Meriam CM, Ryder SH, Fleming BC, Johnson RJ. The effect of screw insertion torque on tendons fixed with spiked washers. Am J Sports Med. 1998;26:536–539.PubMedGoogle Scholar
  9. 9.
    Blickenstaff KR, Grana WA, Egle D. Analysis of a semitendinosus autograft in a rabbit model. Am J Sports Med. 1997;25:554–559.PubMedCrossRefGoogle Scholar
  10. 10.
    Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL. Graft fixation in cruciate ligament reconstruction. Am J Sports Med. 2000;28:761–774.PubMedGoogle Scholar
  11. 11.
    Burkart A, Imhoff AB, Roscher E. Foreign-body reaction to the bioabsorbable suretac device. Arthroscopy. 2000;16:91–95.PubMedGoogle Scholar
  12. 12.
    Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostatics. 1995;35:151–156.CrossRefGoogle Scholar
  13. 13.
    Evanko SP, Vogel KG. Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch Biochem Biophys. 1993;307:153–164.PubMedCrossRefGoogle Scholar
  14. 14.
    Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 1982;9:247–248.PubMedCrossRefGoogle Scholar
  15. 15.
    Fleming B, Beynnon B, Howe J, McLeod W, Pope M. Effect of tension and placement of a prosthetic anterior cruciate ligament on the anteroposterior laxity of the knee. J Orthop Res. 1992;10:177–186.PubMedCrossRefGoogle Scholar
  16. 16.
    Fleming BC, Abate JA, Peura GD, Beynnon BD. The relationship between graft tensioning and the anterior-posterior laxity in the anterior cruciate ligament reconstructed goat knee. J Orthop Res. 2001;19:841–844.PubMedCrossRefGoogle Scholar
  17. 17.
    Friedman MJ, Sherman OH, Fox JM, Del Pizzo W, Snyder SJ, Ferkel RJ. Autogeneic anterior cruciate ligament (ACL) anterior reconstruction of the knee. A review. Clin Orthop. 1985;196:9–14.Google Scholar
  18. 18.
    Gao J, Messner K, Ralphs JR, Benjamin M. An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl). 1996;194:399–406.Google Scholar
  19. 19.
    Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC. Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy. 2005;21:791–803.PubMedGoogle Scholar
  20. 20.
    Gotlin RS, Huie G. Anterior cruciate ligament injuries. Operative and rehabilitative options. Phys Med Rehabil Clin N Am. 2000;11:895–928.PubMedGoogle Scholar
  21. 21.
    Gregor RJ, Abelew TA. Tendon force measurements and movement control: a review. Med Sci Sports Exerc. 1994;26:1359–1372.PubMedGoogle Scholar
  22. 22.
    Grossman MG, ElAttrache NS, Shields CL, Glousman RE. Revision anterior cruciate ligament reconstruction: three- to nine-year follow-up. Arthroscopy. 2005;21:418–423.PubMedGoogle Scholar
  23. 23.
    Hiss J, Hirshberg A, Dayan DF, Bubis JJ, Wolman M. Aging of wound healing in an experimental model in mice. Am J Forensic Med Pathol. 1988;9:310–312.PubMedGoogle Scholar
  24. 24.
    Indelli PF, Dillingham MF, Fanton GS, Schurman DJ. Anterior cruciate ligament reconstruction using cryopreserved allografts. Clin Orthop Relat Res. 2004;420:268–275.PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson DW, Grood ES, Arnoczky SP, Butler DL, Simon TM. Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device (LAD). An experimental study in a goat model. Am J Sports Med. 1987;15:528–538.PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang J, Leong NL, Mung JC, Hidaka C, Lu HH. Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthr Cartil. 2008;16:70–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Jiang J, Nicoll SB, Lu HH. Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun. 2005;338:762–770.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson DH. Should allografts be used for routine anterior cruciate ligament reconstructions? No, allografts should not be used for routine ACL reconstruction. Arthroscopy. 2003;19:424–425.PubMedGoogle Scholar
  29. 29.
    Johnson RJ. The anterior cruciate: a dilemma in sports medicine. Int J Sports Med. 1982;3:71–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979;11:447–455.PubMedCrossRefGoogle Scholar
  31. 31.
    Junqueira LC, Montes GS, Sanchez EM. The influence of tissue section thickness on the study of collagen by the Picrosirius-polarization method. Histochemistry. 1982;74:153–156.PubMedCrossRefGoogle Scholar
  32. 32.
    Koob TJ, Clark PE, Hernandez DJ, Thurmond FA, Vogel KG. Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys. 1992;298:303–312.PubMedCrossRefGoogle Scholar
  33. 33.
    Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med. 1987;15:225–229.PubMedCrossRefGoogle Scholar
  34. 34.
    Kurzweil PR, Frogameni AD, Jackson DW. Tibial interference screw removal following anterior cruciate ligament reconstruction. Arthroscopy. 1995;11:289–291.PubMedGoogle Scholar
  35. 35.
    Li KW, Lindsey DP, Wagner DR, Giori NJ, Schurman DJ, Goodman SB, Smith RL, Carter DR, Beaupre GS. Gene regulation ex vivo within a wrap-around tendon. Tissue Eng. 2006;12:2611–2618.PubMedCrossRefGoogle Scholar
  36. 36.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–621.PubMedCrossRefGoogle Scholar
  37. 37.
    Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy. 2003;19:297–304.PubMedGoogle Scholar
  38. 38.
    Lu HH, El Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis, mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res. 2003;64A:465–474.CrossRefGoogle Scholar
  39. 39.
    Lu HH, Jiang J. Interface tissue engineering and the formulation of multiple-tissue systems. Adv Biochem Eng Biotechnol. 2006;102:91–111.PubMedGoogle Scholar
  40. 40.
    Lu HH, Tang A, Oh SC, Spalazzi JP, Dionisio K. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials. 2005;26:6323–6334.PubMedCrossRefGoogle Scholar
  41. 41.
    Malaviya P, Butler DL, Boivin GP, Smith FN, Barry FP, Murphy JM, Vogel KG. An in vivo model for load-modulated remodeling in the rabbit flexor tendon. J Orthop Res. 2000;18:116–125.PubMedCrossRefGoogle Scholar
  42. 42.
    Markolf KL, Hame S, Hunter DM, Oakes DA, Zoric B, Gause P; Finerman GA. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res. 2002;20:1016–1024.PubMedCrossRefGoogle Scholar
  43. 43.
    Matthews LS, Soffer SR. Pitfalls in the use of interference screws for anterior cruciate ligament reconstruction: brief report. Arthroscopy. 1989;5:225–226.PubMedGoogle Scholar
  44. 44.
    Matyas JR, Anton MG, Shrive NG, Frank CB. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. J Biomech. 1995;28:147–157.PubMedCrossRefGoogle Scholar
  45. 45.
    Milz S, McNeilly C, Putz R, Ralphs JR, Benjamin M. Fibrocartilages in the extensor tendons of the interphalangeal joints of human toes. Anat Rec. 1998;252:264–270.PubMedCrossRefGoogle Scholar
  46. 46.
    Moffat KL, Sun WS, Pena PE, Chahine NO, Doty SB, Ateshian GA, Hung CT, Lu HH. Characterization of the mechanical properties and mineral distribution at the ligament-to-bone insertion site. Proc Natl Acad Sci USA. In Press.Google Scholar
  47. 47.
    Nawata K, Minamizaki T, Yamashita Y, Teshima R. Development of the attachment zones in the rat anterior cruciate ligament: changes in the distributions of proliferating cells and fibrillar collagens during postnatal growth. J Orthop Res. 2002;20:1339–1344.PubMedCrossRefGoogle Scholar
  48. 48.
    Perez-Castro AV, Vogel KG. In situ expression of collagen and proteoglycan genes during development of fibrocartilage in bovine deep flexor tendon. J Orthop Res. 1999;17:139–148.PubMedCrossRefGoogle Scholar
  49. 49.
    Peterson RK, Shelton WR, Bomboy AL. Allograft versus autograft patellar tendon anterior cruciate ligament reconstruction: A 5-year follow-up. Arthroscopy. 2001;17:9–13.PubMedGoogle Scholar
  50. 50.
    Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, Holden MB, Martin DF, Smith BP. Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy. 2005;21:774–785.PubMedGoogle Scholar
  51. 51.
    Rich L, Whittaker P. Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J Morphol Sci. 2005;22:97–104.Google Scholar
  52. 52.
    Robbins JR, Evanko SP, Vogel KG. Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch Biochem Biophys. 1997;342:203–211.PubMedCrossRefGoogle Scholar
  53. 53.
    Robertson DB, Daniel DM, Biden E. Soft tissue fixation to bone. Am J Sports Med. 1986;14:398–403.PubMedCrossRefGoogle Scholar
  54. 54.
    Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75:1795–1803.PubMedGoogle Scholar
  55. 55.
    Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med. 1999;27:476–488.PubMedGoogle Scholar
  56. 56.
    Shellock FG, Mink JH, Curtin S, Friedman MJ. MR imaging and metallic implants for anterior cruciate ligament reconstruction: assessment of ferromagnetism and artifact. J Magn Reson Imaging. 1992;2:225–228.PubMedCrossRefGoogle Scholar
  57. 57.
    Shelton WR, Papendick L, Dukes AD. Autograft versus allograft anterior cruciate ligament reconstruction. Arthroscopy. 1997;13:446–449.PubMedGoogle Scholar
  58. 58.
    Sherman OH, Banffy MB. Anterior cruciate ligament reconstruction: which graft is best? Arthroscopy. 2004;20:974–980.PubMedGoogle Scholar
  59. 59.
    Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH. In vivo evaluation of a multi-phased scaffold designed for orthopaedic interface tissue engineering, soft tissue-to-bone integration. J Biomed Mater Res. 2008; DOI:  10.1002/jbm.a.32073.
  60. 60.
    Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH. Development of Controlled Matrix Heterogeneity on a Triphasic Scaffold for Orthopedic Interface Tissue Engineering. Tissue Eng. 2006;12:3497–3508.PubMedCrossRefGoogle Scholar
  61. 61.
    Spalazzi JP, Gallina J, Fung-Kee-Fung SD, Konofagou EE, Lu HH. Elastographic imaging of strain distribution in the anterior cruciate ligament and at the ligament-bone insertions. J Orthop Res. 2006;24:2001–2010.PubMedCrossRefGoogle Scholar
  62. 62.
    Vanderploeg EJ, Imler SM, Brodkin KR, Garcia AJ, Levenston ME. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech. 2004;37:1941–1952.PubMedCrossRefGoogle Scholar
  63. 63.
    Vogel KG. The effect of compressive loading on proteoglycan turnover in cultured fetal tendon. Connect Tissue Res. 1996;34:227–237.PubMedCrossRefGoogle Scholar
  64. 64.
    Wagner M, Kaab MJ, Schallock J, Haas NP, Weiler A. Hamstring tendon versus patellar tendon anterior cruciate ligament reconstruction using biodegradable interference fit fixation: a prospective matched-group analysis. Am J Sports Med. 2005;33:1327–1336.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang IN, Mitroo S, Chen FH, Lu HH, Doty SB. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J Orthop Res. 2006;24:1745–1755.PubMedCrossRefGoogle Scholar
  66. 66.
    Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffmann RF. Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy. 2002;18:113–123.PubMedCrossRefGoogle Scholar
  67. 67.
    Woo SL, Buckwalter JA. AAOS/NIH/ORS workshop. Injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18–20, 1987. J Orthop Res. 1988;6:907–931.PubMedCrossRefGoogle Scholar
  68. 68.
    Woo SL, Gomez MA, Seguchi Y, Endo CM, Akeson WH. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res. 1983;1:22–29.PubMedCrossRefGoogle Scholar
  69. 69.
    Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–2610.PubMedCrossRefGoogle Scholar
  70. 70.
    Zong X, Ran S, Kim KS, Fang D, Hsiao BS, Chu B. Structure and Morphology Changes during in vitro Degradation of Electrospun Poly(glycolide-co-lactide) Nanofiber Membrane. Biomacromolecules. 2003;4:416–423.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons 2008

Authors and Affiliations

  • Jeffrey P. Spalazzi
    • 1
  • Moira C. Vyner
    • 1
  • Matthew T. Jacobs
    • 1
  • Kristen L. Moffat
    • 1
  • Helen H. Lu
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical Engineering, Biomaterials and Interface Tissue Engineering LaboratoryColumbia UniversityNew YorkUSA
  2. 2.College of Dental MedicineColumbia UniversityNew YorkUSA

Personalised recommendations