Hydrophobization, smoothing, and barrier improvements of cellulose nanofibril films by sol–gel coatings

  • Jari Vartiainen
  • Klaus Rose
  • Yukihiro KusanoEmail author
  • Juha Mannila
  • Lisa Wikström
Brief Communication


Single-layer films from cellulose nanofibrils on a plastic support were coated with sol–gel coated with inorganic–organic copolymers (ORMOCER®s), consisting of inorganic Si–O–Si-based networks combined with ceramic (Al–O– and Zr–O–) groups and special organic fluoroalkyl chain containing functional groups. Sol–gel coatings decreased the surface hydrophilicity and water vapor transmission rate. The water contact angle of uncoated films was 24°, indicating high affinity between water and the cellulose nanofibrils. All sol–gel coatings tested increased the surface hydrophobicity with the contact angles ranging between 54° and 102°. The water vapor transmission rates varied between 230 and 410 g/m2/day. With UV curable highly organically crosslinked coating, the water vapor transmission rate was decreased by 77% as compared to uncoated film. The uncoated film had oxygen transmission rates of 0.7 and 107 cc/m2/day at 50% and 80% RH, respectively. At high humidity conditions, the films tended to swell, thus allowing permeation to increase. Sol–gel coatings significantly improved the oxygen barrier properties especially at 80% RH. The transmission rates varied between 0.4 and 0.5 cc/m2/day (50% RH) and between 51 and 86 cc/m2/day (80% RH).


Cellulose nanofibrils Sol–gel Film Coating 



This work was supported by the European Union Seventh Framework Programme (FP7/2007-2013) with a Grant Number NMP2013-10-608746. Anette Pedersen is acknowledged for preparation of the SEM specimens.


  1. 1.
    Johansson, C, Bras, J, Mondragon, I, Nechita, P, Plackett, D, Simon, P, Gregor Svetec, D, Virtanen, S, Giacinti Baschetti, M, Breen, C, Clegg, F, Aucejo, S, “Renewable Fibers and Bio-Based Materials for Packaging Applications—A Review of Recent Developments.” BioResources, 7 2506–2552 (2012)CrossRefGoogle Scholar
  2. 2.
    Khwaldia, K, Arab-Tehrany, E, Desobry, S, “Biopolymer Coatings on Paper Packaging Materials.” Compr. Rev. Food Sci. Food Saf., 9 82–91 (2010)CrossRefGoogle Scholar
  3. 3.
    Österberg, M, Vartiainen, J, Lucenius, J, Hippi, U, Seppälä, J, Serimaa, R, Laine, J, “A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials.” ACS Appl. Mater. Interf., 5 (11) 4640–4647 (2013)CrossRefGoogle Scholar
  4. 4.
    Tammelin, T, Vartiainen, J, “Nanocellulose Films and Barriers.” In: Oksman, K, Mathew, AP, Bismarck, A, Rojas, O, Sain, M (eds.) Handbook of Green Materials. Processing Technologies, Properties and Applications. World Scientific Publishing, Singapore (2014)Google Scholar
  5. 5.
    Vartiainen, J, Laine, C, Willberg-Keyriläinen, P, Pitkänen, M, Ohra-aho, T, “Biobased Mineral-Oil Barrier-Coated Food-Packaging Films.” J. Appl. Polym. Sci., 134 44586 (2017)CrossRefGoogle Scholar
  6. 6.
    Vartiainen, J, Vähä-Nissi, M, Harlin, A, “Biopolymer Films and Coatings in Packaging Applications: A Review of Recent Developments.” Mater. Sci. Appl., 5 (10) 708–718 (2014)Google Scholar
  7. 7.
    Chinga-Carrasco, G, Kuznetsova, N, Garaeva, M, Galiullina, G, Kostochko, A, Leirset, I, Syverud, K, “Bleached and Unbleached MFC Nanobarriers—Properties and Hydrophobization with Hexamethyldisilazane.” J. Nanoparticle Res., 14 1280 (2012)CrossRefGoogle Scholar
  8. 8.
    Vartiainen, J, Malm, T, “Surface Hydrophobization of CNF Films by Roll-to-Roll HMDSO Plasma Deposition.” J. Coat. Technol. Res., 13 (6) 1145–1149 (2016)CrossRefGoogle Scholar
  9. 9.
    Hirvikorpi, T, Vähä-Nissi, M, Nikkola, J, Harlin, A, Karppinen, M, “Thin Al2O3 Barrier Coatings Onto Temperature-Sensitive Packaging Materials by Atomic Layer Deposition.” Surf. Coat. Technol., 205 (21–22) 5088–5092 (2011)CrossRefGoogle Scholar
  10. 10.
    Yang, Q, Saito, T, Isogai, A, “Facile Fabrication of Transparent Cellulose Films with High Water Repellency and Gas Barrier Properties.” Cellulose, 19 1913–1921 (2012)CrossRefGoogle Scholar
  11. 11.
    Willberg-Keyriläinen, P, Vartiainen, J, Pelto, J, Ropponen, J, “Hydrophobization and Smoothing of Cellulose Nanofibril Films by Cellulose Ester Coatings.” Carbohydr. Polym., 170 160–165 (2017)CrossRefGoogle Scholar
  12. 12.
    Saastamoinen, P, Mattinen, M, Hippi, U, Nousiainen, P, Sipilä, J, Lille, M, Suurnäkki, A, Pere, J, “Laccase Aided Modification of Nanofibrillated Cellulose with Dodecyl Gallate.” BioResources, 7 5749–5770 (2012)CrossRefGoogle Scholar
  13. 13.
    Larsson, P, Pettersson, T, Wågberg, L, “Improved Barrier Films of Cross-Linked Cellulose Nanofibrils: A Microscopy Study.” Green Mater., 2 (4) 163–168 (2014)CrossRefGoogle Scholar
  14. 14.
    Spoljaric, S, Salminen, A, Luong, N, Lahtinen, P, Vartiainen, J, Tammelin, T, Seppälä, J, “Nanofibrillated Cellulose, Poly(vinyl alcohol), Montmorillonite Clay Hybrid Nanocomposites with Superior Barrier and Thermomechanical Properties.” Polym. Compos., 35 (6) 1117–1131 (2013)Google Scholar
  15. 15.
    Vartiainen, J, Pelto, J, Kaljunen, T, Kenttä, E, “Hydrophobization of Cellophane and Cellulose Nano-fibrils Films by Supercritical State Carbon Dioxide Impregnation with Walnut Oil.” Nordic Pulp. Paper Res. J. Mid Sweden Univ., 31 (4) 541–547 (2016)CrossRefGoogle Scholar
  16. 16.
    Torvinen, K, Sievänen, J, Hjelt, T, Hellén, E, “Smooth and Flexible Filler-Nanocellulose Composite Structure for Printed Electronics Applications.” Cellulose, 19 (3) 821–829 (2012)CrossRefGoogle Scholar
  17. 17.
    Penttilä, A, Sievänen, J, Torvinen, K, Ojanperä, K, Ketoja, J, “Filler-Nanocellulose Substrate for Printed Electronics: Experiments and Model Approach to Structure and Conductivity.” Cellulose, 20 (3) 1413–1424 (2013)CrossRefGoogle Scholar
  18. 18.
    Torvinen, K, Lehtimäki, S, Keränen, J, Sievänen, J, Vartiainen, J, Hellén, E, Lupo, D, Tuukkanen, S, “Pigment-Cellulose Nanofibril Composite and its Application as a Separator-Substrate in Printed Supercapacitors.” Electronic Mater. Let., 11 (6) 1040–1047 (2015)CrossRefGoogle Scholar
  19. 19.
    Mäkelä, T, Kainlauri, M, Willberg-Keyriläinen, P, Tammelin, T, Forsström, U, “Fabrication of Micropillars on Nanocellulose Films Using a Roll-to-Roll Nanoimprinting Method.” Microelectron. Eng., 163 1–6 (2016)CrossRefGoogle Scholar
  20. 20.
    Schottner, G, Rose, K, Posset, U, “Scratch and Abrasion Resistant Coatings on Plastic Lenses—State of the Art, Current Developments and Perspectives.” J. Sol-Gel Sci. Technol., 27 71–79 (2003)CrossRefGoogle Scholar
  21. 21.
    Kron, J, Schottner, G, Deichmann, K-J, “Glass Design Via Hybrid Sol–Gel Materials.” Thin Solid Films, 392 236–242 (2001)CrossRefGoogle Scholar
  22. 22.
    Matĕjec, M, Rose, K, Hayer, M, Pospisilova, M, Chomat, M, “Development of Organically Modified Polysiloxanes for Coating Optical Fibers and their Sensitivity to Gases and Solvents.” Sens. Actuators B Chem., 38–39 438–442 (1997)CrossRefGoogle Scholar
  23. 23.
    Greiwe, K, “Korrosionsbeständige Schutzbeschichtung für Messingoberflächen.” Farbe Lack, 97 368–371 (1991)Google Scholar
  24. 24.
    Popall, M, Kappel, J, Pilz, M, Schulz, J, “A New Inorganic-Organic Polymer for the Passivation of Thin Film Capacitors.” J. Sol-Gel Sci. Technol., 2 157–160 (1994)CrossRefGoogle Scholar
  25. 25.
    Haas, KH, Amberg-Schwab, S, Rose, K, “Functionalized Coating Materials Based on Inorganic-Organic Polymers.” Thin Solid Films, 351 198–203 (1999)CrossRefGoogle Scholar
  26. 26.
    Tammelin T, Salminen A, Hippi U, “Method for the Preparation of NFC Films on Supports.” Patent WO2013/060934 (2013)Google Scholar
  27. 27.
    Newton, K, Rigg, W, “The Effect of Film Permeability on the Storage Life and Microbiology of Vacuum Packed Meat.” J. Appl. Bacteriol., 47 433–441 (1979)CrossRefGoogle Scholar
  28. 28.
    Wu, J, Yuan, Q, “Gas Permeability of a Novel Cellulose Membrane.” J. Membrane Sci., 204 185–194 (2002)CrossRefGoogle Scholar
  29. 29.
    Aulin, C, Gällstedt, M, Lindström, T, “Oxygen and Oil Barrier Properties of Microfibrillated Cellulose Films and Coatings.” Cellulose, 17 (3) 559–574 (2010)CrossRefGoogle Scholar
  30. 30.
    Plackett, D, Anturi, H, Hedenqvist, M, Ankerfors, M, Gällstedt, M, Lindström, T, Siro, I, “Physical Properties and Morphology of Films Prepared from Microfibrillated Cellulose and Microfibrillated Cellulose in Combination with Amylopectin.” J. Appl. Polym. Sci., 117 3601–3609 (2012)Google Scholar
  31. 31.
    Liu, A, Walther, A, Ikkala, O, Belova, L, Berglund, L, “Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions.” Biomacromolecules, 12 (3) 633–641 (2011)CrossRefGoogle Scholar
  32. 32.
    Yang, Q, Fukuzumi, H, Saito, T, Isogai, A, Zhang, L, “Transparent Cellulose Films with High Gas Barrier Properties Fabricated from Aqueous Alkali/Urea Solutions.” Biomacromolecules, 12 (7) 2766–2771 (2011)CrossRefGoogle Scholar
  33. 33.
    Wu, C, Saito, T, Fujisawa, S, Fukuzumi, H, Isogai, A, “Ultrastrong and High Gas-Barrier Nanocellulose/Clay Layered Composites.” Biomacromolecules, 13 (6) 1927–1932 (2012)CrossRefGoogle Scholar
  34. 34.
    Vartiainen, J, Tuominen, M, Nättinen, K, “Bio-Hybrid Nanocomposite Coatings from Sonicated Chitosan and Nanoclay.” J. Appl. Polym. Sci., 116 3638–3647 (2010)Google Scholar
  35. 35.
    Spence, K, Venditti, R, Rojas, O, Pawlak, J, Hubbe, M, “Water Vapor Barrier Properties of Coated and Filled Microfibrillated Cellulose Composite Films.” BioResources, 6 (4) 4370–4388 (2011)Google Scholar
  36. 36.
    Aulin, C, Ström, G, “Multilayered Alkyd Resin/Nanocellulose Coatings for Use in Renewable Packaging Solutions with a High Level of Moisture Resistance.” Ind. Eng. Chem. Res., 52 2582–2589 (2013)CrossRefGoogle Scholar
  37. 37.
    Hult, E, Iotti, M, Lenes, M, “Efficient Approach to High Barrier Packaging Using Microfibrillar Celluose and Shellac.” Cellulose, 17 575–586 (2010)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2019

Authors and Affiliations

  1. 1.VTT Technical Research Centre of Finland LtdEspooFinland
  2. 2.Fraunhofer-Institut SilicatforschungWürzburgGermany
  3. 3.Technical University of DenmarkRoskildeDenmark
  4. 4.VTT Technical Research Centre of Finland LtdTampereFinland

Personalised recommendations