Advertisement

Improved homogeneity of plasma and coating properties using a lance matrix gas distribution in MW-PECVD

  • Dennis Kirchheim
  • Stefan Wilski
  • Montgomery Jaritz
  • Felix Mitschker
  • Moritz Oberberg
  • Jan Trieschmann
  • Lars Banko
  • Markus Brochhagen
  • Rabea Schreckenberg
  • Christian Hopmann
  • Marc Böke
  • Jan Benedikt
  • Teresa de los Arcos
  • Guido Grundmeier
  • Dario Grochla
  • Alfred Ludwig
  • Thomas Mussenbrock
  • Ralf Peter Brinkmann
  • Peter Awakowicz
  • Rainer Dahlmann
Article
  • 62 Downloads

Abstract

Plasma reactors for the application of silicon oxide coatings (SiOx) are often customized to optimize the processes regarding substrate properties and targeted functionalities. The design of these reactors is often based on qualitative considerations. This paper evaluates the use of a numerical, free simulation software for continuous mechanical problems (OpenFOAM) as a tool to evaluate reactor design options. As demonstrator for this purpose serves a given reactor for large-area pulsed microwave plasmas with a precursor inlet in the form of a shower ring. Previous results indicate that the shower ring may lead to an inhomogeneity in plasma and coatings properties along the substrate surface. Thus, a new precursor inlet design shall be developed. For this, the distribution of the process gases in the reactor for a variety of gas inlet designs and gas flows was simulated and a design chosen based on the results. The reactor was modified accordingly, and the simulations correlated with experimental results of plasma and coating properties. The results show that, despite many simplifications, a simulation of the neutral gas distribution using an open-access software can be a viable tool to support reactor and process design development.

Keywords

PECVD Plasma SiOx Silicon oxide Coating Reactor design Barrier 

Notes

Acknowledgment

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the Transregional Collaborative Research Center SFB-TR 87. We would like to express our thanks to the DFG.

References

  1. 1.
    Vissing, KD, Aufskalierung plasmapolymerer Beschichtungsverfahren. Cuvillier Verlag, Göttingen (2008)Google Scholar
  2. 2.
    Leu, GF, “Experimentelle Untersuchung und Modellierung der Volumenprozesse in einem mikrowellenangeregten Hexamethyldisiloxan/Sauerstoff/Argon-Beschichtungsplasma.” Bergische Universität Wuppertal, Dissertation (2009)Google Scholar
  3. 3.
    Bahroun, K, “Prozessentwicklung zur Abscheidung dehnbarer Barriereschichten auf PET mittels Plasmapolymerisation.” RWTH Aachen, Dissertation (2017)Google Scholar
  4. 4.
    Coronell, DG, Jensen, KF, “Analysis of Transition Regime Flows in Low Pressure Chemical Vapor Deposition Reactors Using the Direct Simulation Monte Carlo Method.” J. Electrochem. Soc., 139 2264–2273 (1992)CrossRefGoogle Scholar
  5. 5.
    Groves, JF, Wadley, HNG, “Monte Carlo Modeling of Atom Transport During Directed Vapor Deposition.” MRS Online Proceedings Library Archive 441 (1996)Google Scholar
  6. 6.
    Hash, D, Meyyappan, M, “A Direct Simulation Monte Carlo Study of Flow Considerations in Plasma Reactor Development for 300 mm Processing.” J. Electrochem. Soc., 144 (3999–4004) 1 (1997)Google Scholar
  7. 7.
    Kleijn, CR, Dorsman, R, Kuijlaars, KJ, Okkerse, M, van Santen, H, “Multi-scale Modeling of Chemical Vapor Deposition Processes for Thin Film Technology.” J. Cryst. Growth, 303 362–380 (2007)CrossRefGoogle Scholar
  8. 8.
    Economou, DJ, “Modeling and Simulation of Fast Neutral Beam Sources for Materials Processing.” Plasma Process. Polymers, 6 308–319 (2009)CrossRefGoogle Scholar
  9. 9.
    Huard, CM, Zhang, Y, Sriraman, S, Paterson, A, Kushner, MJ, “Role of Neutral Transport in Aspect Ratio Dependent Plasma Etching of Three-Dimensional Features.” J. Vac. Sci. Technol. A: Vac. Surf. Films, 35 05C301 (2017)CrossRefGoogle Scholar
  10. 10.
    Gochberg, LA, “Comparison of Navier–Stokes and DSMC Gas Flow Models in Semiconductor Process Chambers.” AIP Conf. Proc., 663 1073–1078 (2003)CrossRefGoogle Scholar
  11. 11.
    Bobzin, K, Brinkmann, RP, Mussenbrock, T, Bagcivan, N, Brugnara, RH, Schäfer, M, Trieschmann, J, “Continuum and Kinetic Simulations of the Neutral Gas Flow in an Industrial Physical Vapor Deposition Reactor.” Surf. Coat. Technol., 237 176 (2013)CrossRefGoogle Scholar
  12. 12.
    Economou, DJ, Bartel, TJ, Wise, RS, Lymberopoulos, DP, “Twodimensional Direct Simulation Monte Carlo (DSMC) of Reactive Neutral and Ion Flow in a High Density Plasma Reactor.” IEEE Trans. Plasma Sci., 23 581 (1995)CrossRefGoogle Scholar
  13. 13.
    Johannes, J, Bartel, T, Hebner, GA, Woodworth, J, Economou, DJ, “Direct Simulation Monte Carlo of Inductively Coupled Plasma and Comparison with Experiments.” J. Electrochem. Soc., 144 2448–2455 (1997)CrossRefGoogle Scholar
  14. 14.
    Nanbu, K, Morimoto, T, Suetani, M, “Direct Simulation Monte Carlo Analysis of Flows and Etch Rate in an Inductively Coupled Plasma Reactor.” IEEE Trans. Plasma Sci., 27 1379 (1999)CrossRefGoogle Scholar
  15. 15.
    Lapke, M, Mussenbrock, T, Brinkmann, RP, “The Multipole Resonance Probe. A Concept for Simultaneous Determination of Plasma Density, Electron Temperature, and Collision Rate in Low-Pressure Plasmas.” Appl. Phys. Lett., 93 (5) 51502 (2008)CrossRefGoogle Scholar
  16. 16.
    Lapke, M, Oberrath, J, Schulz, C, Storch, R, Styrnoll, T, Zietz, C, Awakowicz, P, Brinkmann, RP, Musch, T, Mussenbrock, T, Rolfes, I, “The Multipole Resonance Probe. Characterization of a Prototype.” Plasma Sources Sci. Technol., 20 (4) 42001 (2011)CrossRefGoogle Scholar
  17. 17.
    Lapke, M, “Analyse und Optimierung der Multipolresonanzsonde als industrietaugliches Plasmadiagnostiksystem”, Doctoral thesis, Ruhr-University Bochum, Bochum (2011)Google Scholar
  18. 18.
    Kokura, H, Nakamura, K, Ghanashev, IP, Sugai, H, “Plasma Absorption Probe for Measuring Electron Density in an Environment Soiled with Processing Plasmas.” Jpn. J. Appl. Phys., 38 (Part 1, No. 9A) 5262–5266 (1999)CrossRefGoogle Scholar
  19. 19.
    Scharwitz, C, Boeke, M, Winter, J, “Optimised Plasma Absorption Probe for the Electron Density Determination in Reactive Plasmas.” Plasma Process Polymer, 6 (1) 76–85 (2009)CrossRefGoogle Scholar
  20. 20.
    Scharwitz, C, Böke, M, Hong, S-H, Winter, J, “Experimental Characterisation of the Plasma Absorption Probe.” Plasma Process Polymer, 4 (6) 605–611 (2007)CrossRefGoogle Scholar
  21. 21.
    Scharwitz, C, “The Plasma Absorption Probe: Optimisation by Model-based Design Variations.” Ph.D. thesis, Ruhr-Universität Bochum, Bochum (2008)Google Scholar
  22. 22.
    Lapke, M, Mussenbrock, T, Brinkmann, RP, Scharwitz, C, Böke, M, Winter, J, “Modeling and Simulation of the Plasma Absorption Probe.” Appl. Phys. Lett., 90 (12) 121502 (2007)CrossRefGoogle Scholar
  23. 23.
    Schulz, C, Lapke, M, Oberrath, J, Storch, R, Styrmoll, T, Zietz, C, Awakowicz, P, Brinkmann, RP, Musch, T, Mussenbrock, T, Rolfes, I, “The Multipole Resonance Probe. Realization of an Optimized Radio-Frequency Plasma Probe Based on Active Plasma Resonance Spectroscopy.” IEEE Middle East Conference on Antennas and Propagation (MECAP 2010), Cairo, Egypt (2010)Google Scholar
  24. 24.
    Schulz, C, Styrnoll, T, Storch, R, Awakowicz, P, Musch, T, Rolfes, I, “The Multipole Resonance Probe. Progression and Evaluation of a Process Compatible Plasma Sensor.” IEEE Sens. J., 14 (10) 3408–3417 (2014)CrossRefGoogle Scholar
  25. 25.
    Styrnoll, T, Bienholz, S, Lapke, M, Awakowicz, P, “Study on Electrostatic and Electromagnetic Probes Operated in Ceramic and Metallic Depositing Plasmas.” Plasma Sources Sci. Technol., 23 (2) 25013 (2014)CrossRefGoogle Scholar
  26. 26.
    Styrnoll, T, Harhausen, J, Lapke, M, Storch, R, Brinkmann, RP, Foest, R, Ohl, A, Awakowicz, P, “Process Diagnostics and Monitoring Using the Multipole Resonance Probe in an Inhomogeneous Plasma for Ion-Assisted Deposition of Optical Coatings.” Plasma Sources Sci. Technol., 22 (4) 45008 (2013)CrossRefGoogle Scholar
  27. 27.
    Grochla, D, Siegel, A, Hamann, S, Buenconsejo, PJS, Kieschnick, M, Brunken, H, König, D, Ludwig, A, “Time- and Space-Resolved High-Throughput Characterization of Stresses During Sputtering and Thermal Processing of Al–Cr–N Thin Films.” J. Phys. D: Appl. Phys., 46 (8) 84011 (2013)CrossRefGoogle Scholar
  28. 28.
    Otto, M, Analytische Chemie. Wiley, Weinheim (2014)Google Scholar
  29. 29.
    Kirchheim, D, Jaritz, M, Mitschker, F, Gebhard, M, Brochhagen, M, Hopmann, C, Böke, M, Devi, A, Awakowicz, P, Dahlmann, R, “Transport Mechanisms Through PE-CVD Coatings. Influence of Temperature, Coating Properties and Defects on Permeation of Water Vapour.” J. Phys. D: Appl. Phys., 50 (8) 85203 (2017)CrossRefGoogle Scholar
  30. 30.
    Dahlmann, R, “Permeation Through Plasma Polymerized Layers and Plasma Coating of Plastics Pipes and Hollow Bodies.” Doctoral thesis, RWTH Aachen University, Aachen (2002)Google Scholar
  31. 31.
    Bird, GA, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (2003)Google Scholar
  32. 32.
    Scanlon, TJ, Roohi, E, White, C, Darbandi, M, Reese, JM, “An Open Source, Parallel DSMC Code for Rarefied Gas Flows in Arbitrary Geometries.” Comput. Fluids, 39 (10) 2078–2089 (2010)CrossRefGoogle Scholar
  33. 33.
    Trieschmann, J, Mussenbrock, T, “Transport of Sputtered Particles in Capacitive Sputter Sources.” J. Appl. Phys., 118 (3) 33302 (2015)CrossRefGoogle Scholar
  34. 34.
    Trieschmann, J, Schmidt, F, Mussenbrock, T, “Particle-in-Cell/Test-Particle Simulations of Technological Plasmas. Sputtering Transport in Capacitive Radio Frequency Discharges.” Plasma Process Polymer, 14 (1–2) 1600140 (2017)CrossRefGoogle Scholar
  35. 35.
    Greenshields, CJ, “OpenFOAM: The Open Source CFD Toolbox, User Guide 2.4.0.” https://openfoam.org/ (2015)
  36. 36.
    Weller, HG, Greenshields, CJ, de Rouvray, C, “The OpenFOAM Foundation Ltd.” http://www.openfoam.org (2016)
  37. 37.
    Borgnakke, C, Larsen, PS, “Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture.” J. Comput. Phys., 18 (4) 405–420 (1975)CrossRefGoogle Scholar
  38. 38.
    Morokoff, WJ, Kersch, A, “A Comparison of Scattering Angle Models.” Comput. Math. Appl., 35 (1–2) 155–164 (1998)CrossRefGoogle Scholar
  39. 39.
    Cardoso, RP, Belmonte, T, Henrion, G, Gries, T, Tixhon, E, “Analysis of Mass Transport in an Atmospheric Pressure Remote Plasma-Enhanced Chemical Vapor Deposition Process.” J. Appl. Phys., 107 (2) 24909 (2010)CrossRefGoogle Scholar
  40. 40.
    Behm, H, “Investigation of Plasma Processes and Their Influence on the Composite Properties of Polypropylene Coated by Means of Plasma Polymerization.” Doctoral thesis, RWTH Aachen University, Aachen (2016)Google Scholar
  41. 41.
    Grochla, D, Banko, L, Pfetzing-Micklich, J, Behm, H, Dahlmann, R, Ludwig, A, “Si Micro-cantilever Sensor Chips for Space-Resolved Stress Measurements in Physical and Plasma-Enhanced Chemical Vapour Deposition.” Sens. Actuators A: Phys., 270 271–277 (2018)CrossRefGoogle Scholar
  42. 42.
    Gebhard, M, Mai, L, Banko, L, Mitschker, F, Hoppe, C, Jaritz, M, Kirchheim, D, Zekorn, C, de Los Arcos, T, Grochla, D, Dahlmann, R, Grundmeier, G, Awakowicz, P, Ludwig, A, Devi, A, “PEALD of SiO2 and Al2O3 Thin Films on Polypropylene: Investigations of the Film Growth at the Interface, Stress and Gas Barrier Properties of Dyads.” ACS Appl. Mater. Interfaces, 10 (8) 7422–7434 (2018)CrossRefGoogle Scholar
  43. 43.
    Grochla, D, Siegel, A, Hamann, S, Buenconsejo, P, Kieschnick, M, Brunken, H, König, D, Ludwig, A, “Time- and Space-Resolved High-Throughput Characterization of Stresses During Sputtering and Thermal Processing of Al–Cr–N Thin Films.” J. Phys. D: Appl. Phys., 46 084011 (2013)CrossRefGoogle Scholar
  44. 44.
    Daniel, R, Martinschitz, K, Keckes, J, Mitterer, C, “The Origin of Stresses in Magnetron-Sputtered Thin Films with Zone T Structures.” Acta Mater., 58 2621–2633 (2010)CrossRefGoogle Scholar
  45. 45.
    Bahre, H, Behm, H, Grochla, D, Böke, M, Dahlmann, R, Hopmann, Ch, Ludwig, A, Winter, J, “Film Stress of Amorphous Hydrogenated Carbon on Biaxially Oriented Polyethylene Terephthalate.” Plasma Process. Polymers, 12 (9) 896–904 (2015)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2018

Authors and Affiliations

  • Dennis Kirchheim
    • 1
  • Stefan Wilski
    • 1
  • Montgomery Jaritz
    • 1
  • Felix Mitschker
    • 2
  • Moritz Oberberg
    • 2
  • Jan Trieschmann
    • 3
    • 4
  • Lars Banko
    • 5
  • Markus Brochhagen
    • 6
  • Rabea Schreckenberg
    • 7
  • Christian Hopmann
    • 1
  • Marc Böke
    • 6
  • Jan Benedikt
    • 6
  • Teresa de los Arcos
    • 7
  • Guido Grundmeier
    • 7
  • Dario Grochla
    • 5
  • Alfred Ludwig
    • 5
  • Thomas Mussenbrock
    • 4
  • Ralf Peter Brinkmann
    • 3
  • Peter Awakowicz
    • 2
  • Rainer Dahlmann
    • 1
  1. 1.Institute for Plastics Processing (IKV)RWTH Aachen UniversityAachenGermany
  2. 2.Electrical Engineering and Plasma TechnologyRuhr-University BochumBochumGermany
  3. 3.Institute for Theoretical Electrical EngineeringRuhr-University BochumBochumGermany
  4. 4.Electrodynamics and Physical Electronics GroupBrandenburg University of Technology Cottbus - SenftenbergCottbusGermany
  5. 5.Materials of MicrotechnologyRuhr-University BochumBochumGermany
  6. 6.Institute for Experimental Physics IIRuhr-University BochumBochumGermany
  7. 7.Technical and Macromolecular ChemistryUniversity of PaderbornPaderbornGermany

Personalised recommendations