Journal of Coatings Technology and Research

, Volume 16, Issue 1, pp 159–166 | Cite as

Alkyl 2-furoates obtained by green chemistry procedures as suitable new antifoulants for marine protective coatings

  • Angélica Escobar
  • Míriam Pérez
  • Ángel Sathicq
  • Mónica García
  • Analia Paola
  • Gustavo Romanelli
  • Guillermo BlusteinEmail author


In search of new sustainable alternatives to reduce the use of metallic antifouling pigments in marine paints, three n-alkyl 2-furoates were synthesized by safe procedures framed within the green chemistry concepts. These compounds were characterized by current organic analysis, and their antifouling properties were first evaluated on Artemia salina nauplii in the laboratory. Then, antifouling paints formulated with these compounds were assayed in a marine environment. Both laboratory and field tests indicate that n-alkyl 2-furoates have strong antifouling activity and are safe chemicals for marine paints.


Biofouling Alkyl 2-furoates Antifouling paints Green chemistry 



We thank CONICET (PIP 003), ANPCyT (PICT 0409), ANPCYT (Project: ERANET-LAC), Universidad Nacional de La Plata and CICPBA for their financial support. We also wish to thank the Club de Motonáutica of Mar del Plata for permission to use their marine testing site.


  1. 1.
    Amara, I, Miled, W, Slama, R, Ladhari, N, “Antifouling Processes and Toxicity Effects of Antifouling Paints on Marine Environment. A Review.” Environ Toxicol Pharmacol, 57 115–130 (2018)CrossRefGoogle Scholar
  2. 2.
    Schwindt, E, Lopez Gappa, J, Raffo, M, Tatian, M, Bortolus, A, Orensanz, J, Alonso, G, Diez, M, Doti, B, Genzano, G, Lagger, C, Lovrich, G, Piriz, P, Mendez, M, Savoya, V, Sueiro, M, “Marine Fouling Invasions in Ports of Patagonia (Argentina) with Implications for Legislation and Monitoring Programs.” Mar Environ Res, 99 60–68 (2014)CrossRefGoogle Scholar
  3. 3.
    Thomas, K, Fileman, T, Readman, J, Waldock, M, “Antifouling Paint Booster Biocides in the UK Coastal Environment and Potential Risks of Biological Effects.” Mar Pollut Bull, 42 (8) 677–688 (2001)CrossRefGoogle Scholar
  4. 4.
    Ytreberg, E, Bighiu, M, Lundgren, L, Eklund, B, “XRF Measurements of Tin, Copper and Zinc in Antifouling Paints Coated on Leisure Boats.” Environ Pollut, 213 594–599 (2016)CrossRefGoogle Scholar
  5. 5.
    Qi, S, Zhang, S, Qian, P, Xiao, Z, Li, M, “Ten New Antifouling Briarane Diterpenoids from the South China Sea Gorgonian Juncella juncea.” Tetrahedron, 62 (39) 9123–9130 (2006)CrossRefGoogle Scholar
  6. 6.
    Santos-Acevedo, M, Puentes, C, Carreño, K, Gómez-León, J, Stupak, M, García, M, Pérez, M, Blustein, G, “Antifouling Paints Based on Marine Natural Products from Colombian Caribbean.” Int Biodeterior Biodegrad, 83 97–104 (2013)CrossRefGoogle Scholar
  7. 7.
    Fusetani, N, “Antifouling Marine Natural Products.” Nat Prod Rep, 28 (2) 400–410 (2011)CrossRefGoogle Scholar
  8. 8.
    Stewart, M, Miles, W, Depree, C, “Antifouling Activity of Synthetic γ-Hydroxybutenolides.” Int Biodeterior Biodegrad, 88 1–9 (2013)Google Scholar
  9. 9.
    de Nys, R, Givskov, M, Kumar, N, Kjelleberg, S, Steinberg, P, “Furanones.” Prog Mol Subcell Biol, 42 55–86 (2006)Google Scholar
  10. 10.
    Li, Y, Wu, H, Xu, Y, Shao, C, Wang, C, Qian, P, “Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms.” Mar Biotechnol, 15 (5) 552–558 (2013)CrossRefGoogle Scholar
  11. 11.
    Stewart, M, Depree, C, Thompson, K, “Antifouling Sesterterpenes from the New Zealand Marine Sponge Semitaspongia bactriana.” Nat Prod Commun, 4 (3) 1–6 (2009)Google Scholar
  12. 12.
    Raveendran, T, Limna Mol, V, Parameswaran, P, “Natural Product Antifoulants from the Octocorals of Indian Waters.” Int Biodeterior Biodegrad, 65 265–268 (2011)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Corma, A, Iborra, S, Velty, A, “Chemical Routes for the Transformation of Biomass into Chemicals.” Chem Rev, 107 (6) 2411–2502 (2007)CrossRefGoogle Scholar
  15. 15.
    Okada, M, Tachikawa, K, Aoi, K, “Biodegradable Polymers Based on Renewable Resources. II. Synthesis and Biodegradability of Polyesters Containing Furan Rings.” J Polym Sci A Polym Chem, 35 (13) 2729–2737 (1997)CrossRefGoogle Scholar
  16. 16.
    Escobar, A, Ruiz, D, Autino, J, Romanelli, P, “Single-Step Synthesis of 4-phenyl and 3,4-dihydro-4-phenyl Coumarins Using a Recyclable Preyssler Heteropolyacid Catalyst Under Solvent-Free Reaction Conditions.” Res Chem Intermed, 41 10109–10123 (2015)CrossRefGoogle Scholar
  17. 17.
    Persoone, G, Castritsi-Catharios, J, “A Simple Bioassay with Artemia Larvae to Determine the Acute Toxicity of Antifouling Paints.” Water Res, 23 (7) 893–897 (1989)CrossRefGoogle Scholar
  18. 18.
    Foster, M, Harrold, C, Hardin, D, “Points Versus Photo Quadrat Estimates of the Cover of Sessile Marine Organisms.” J Exp Mar Biol Ecol, 146 (2) 193–203 (1991)CrossRefGoogle Scholar
  19. 19.
    Sánchez, L, Pasquale, G, Sathicq, A, Ruiz, D, Jios, J, Ferreira de Souza, A, Romanelli, G, “Simple and Ecofriendly Synthesis of Dihydropyrimidinones (thiones), Dihydropyridines, and Pyridines Using 3-formylchromones as Substrates Assisted by a Recyclable Preyssler Heteropolyacid.” Heteroat Chem, 27 (5) 295–305 (2016)CrossRefGoogle Scholar
  20. 20.
    Escobar, A, Sathicq, A, Pizzio, L, Blanco, M, Romanelli, G, “Biomass Valorization Derivatives: Clean Esterification of 2-Furoic Acid Using Tungstophosphoric Acid/Zirconia Composites as Recyclable Catalyst.” Process Saf Environ Prot, 98 176–186 (2015)CrossRefGoogle Scholar
  21. 21.
    Castritsi-Catharios, J, Bourdaniotis, N, Persoone, G, “A New Simple Method with High Precision for Determining the Toxicity of Antifouling Paints on Brine Shrimp Larvae (Artemia): First Results.” Chemosphere, 67 (6) 1127–1132 (2007)CrossRefGoogle Scholar
  22. 22.
    Klostergaard, H, “Notes—Esterification with Trapping Phase.” J Org Chem, 23 (1) 108–110 (1958)CrossRefGoogle Scholar
  23. 23.
    Pérez, M, García, M, Sánchez, M, Stupak, M, Mazzuca, M, Palermo, J, Blustein, G, “Effect of Secochiliolide Acid Isolated from the Patagonian Shrub Nardophyllum bryoides as Active Component in Antifouling Paints.” Int Biodeterior Biodegrad, 89 37–44 (2014)CrossRefGoogle Scholar
  24. 24.
    Shao, C, Wu, H, Wang, C, Liu, Q, Xu, Y, Wei, M, Qian, P, Gu, Y, Zheng, C, She, Z, Lin, Y, “Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-Derived Fungus Cochliobolus lunatus.” J Nat Prod, 74 (4) 629–633 (2011)CrossRefGoogle Scholar
  25. 25.
    Lowery, C, Abe, T, Park, J, Eubanks, L, Sawada, D, Kaufmann, G, Janda, K, “Revisiting AI-2 Quorum Sensing Inhibitors: Direct Comparison of Alkyl-DPD Analogues and a Natural Product Fimbrolide.” J Am Chem Soc, 131 (43) 15584–15585 (2009)CrossRefGoogle Scholar
  26. 26.
    Badireddy, A, Hernández Delgadillo, R, Sánchez-Nájera, S, Chellam, S, Cabral-Romero, C, “Synthesis and Characterization of Lipophilic Bismuth Dimercaptopropanol Nanoparticles and Their Effects on Oral Microorganisms Growth and Biofilm Formation.” J Nanopart Res, 16 2456 (2014)CrossRefGoogle Scholar
  27. 27.
    Cahill, P, Heasman, K, Jeffs, A, Kuhajek, J, “Laboratory Assessment of the Antifouling Potential of a Soluble-Matrix Paint Laced With the Natural Compound Polygodial.” Biofouling, 30 (9) 967–975 (2014)CrossRefGoogle Scholar
  28. 28.
    Moodie, L, Trepos, R, Cervin, G, Larsen, L, Larsen, D, Pavia, H, Hellio, C, Cahill, P, Svenson, J, “Probing the Structure-Activity Relationship of the Natural Antifouling Agent Polygodial Against both Micro and Macrofoulers by Semisynthetic Modification.” J Nat Prod, 80 (2) 515–525 (2017)CrossRefGoogle Scholar
  29. 29.
    Grandic, M, Zovko, A, Frangež, R, Turk, T, Sepcic, K, “Binding and Permeabilization of Lipid Bilayers by Natural and Synthetic 3-Alkylpyridinium Polymers.” Bioorganic Med Chem, 20 (5) 1659–1664 (2012)CrossRefGoogle Scholar
  30. 30.
    Jung, J, Pandit, S, Jeon, J, “Identification of Linoleic Acid, a Main Component of the n-Hexane Fraction from Dryopteris crassirhizoma, as an Anti-Streptococcus mutans Biofilm Agent.” Biofouling, 30 (7) 789–798 (2014)CrossRefGoogle Scholar
  31. 31.
    Pérez, M, García, M, Blustein, G, “Evaluation of Low Copper Content Antifouling Paints Containing Natural Phenolic Compounds as Bioactive Additives.” Mar Environ Res, 109 177–184 (2015)CrossRefGoogle Scholar
  32. 32.
    Carteau, D, Vallée-Réhel, K, Linossier, I, Quiniou, F, Davy, R, Compère, C, Delbury, M, Faÿ, F, “Development of Environmentally Friendly Antifouling Paints Using Biodegradable Polymer and Lower Toxic Substances.” Prog Org Coat, 77 (2) 485–493 (2014)CrossRefGoogle Scholar
  33. 33.
    Viju, N, Satheesh, S, Vincent, S, “Antibiofilm Activity of Coconut (Cocos nucifera Linn.) Husk Fibre Extract.” Saudi J Biol Sci, 20 (1) 85–91 (2013)CrossRefGoogle Scholar
  34. 34.
    Al-Naamani, L, Dobretsov, S, Dutta, J, Burgess, J, “Chitosan-Zinc Oxide Nanocomposite Coatings for the Prevention of Marine Biofouling.” Chemosphere, 168 408–417 (2017)CrossRefGoogle Scholar
  35. 35.
    Myan, F, Walker, J, Odette Paramo, O, “The Interaction of Marine Fouling Organisms with Topography of Varied Scale and Geometry: A Review.” Biointerphases, 8 (30) 1–13 (2013)Google Scholar

Copyright information

© American Coatings Association 2018

Authors and Affiliations

  • Angélica Escobar
    • 1
  • Míriam Pérez
    • 2
    • 3
  • Ángel Sathicq
    • 1
  • Mónica García
    • 3
  • Analia Paola
    • 2
    • 3
  • Gustavo Romanelli
    • 1
    • 4
  • Guillermo Blustein
    • 3
    • 4
    Email author
  1. 1.Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Departamento de Química, Facultad de Ciencias ExactasUNLP-CCT-CONICETLa PlataArgentina
  2. 2.Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT)CICPBA-CONICETLa PlataArgentina
  4. 4.Centro de Investigación en Sanidad Vegetal (CISaV), Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations