Journal of Coatings Technology and Research

, Volume 13, Issue 4, pp 577–587 | Cite as

3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films

  • Eva Cznotka
  • Steffen Jeschke
  • Sebastian Schmohl
  • Patrik Johansson
  • Hans-Dieter Wiemhöfer


Currently, atomic force microscopy is the preferred technique to determine roughness on membrane surfaces. In this paper, a new method to measure surface roughness is presented using a 3D laser scanning confocal microscope for high-resolution topographic analysis and is compared to conventional SEM. For this study, the surfaces of eight samples based on a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) host polymer with different liquid interpenetrating components were analyzed. Polymethylhydrosiloxane, triethylene glycolallylmethylether, (3,3,3-trifluoropropyl)methylcyclotrisiloxane (D3-C2H4CF3), polysiloxane-comb-propyloxymethoxytriglycol (PSx), polysiloxane-comb-propyl-3,3,3-trifluoro (PSx-C2H4CF3), poly[bis(2-(2-methoxyethoxy) ethoxy) phosphazene, or poly[bis(trifluoro)ethoxy] phosphazene was chosen as interpenetrating compound to investigate the impact of comb and double-comb-structured polymer backbones, as well as their dipolar or fluorous residues on the PVDF-HFP-miscibility. Different phases of the constituting ingredients were identified via their thermal properties determined by DSC. Additionally, the COSMO-RS method supported the experimental results, and with regard to computed σ-profiles, new modified structures for polysiloxane and polyphosphazene synthesis were suggested.


3D laser scanning confocal microscopy Thin film Polymer electrolyte, comb and double-comb polymers 


  1. 1.
    Souquet, JL, Duclot, M, “Thin Film Lithium Batteries.” Solid State Ion, 148 375–379 (2002)CrossRefGoogle Scholar
  2. 2.
    Seo, I, Steve, W, New Developments in Solid Electrolytes for Thin-Film Lithium Batteries, In: Belharouak, I (ed.) Lithium Ion Batteries—New Developments, InTech, New York, 2012.
  3. 3.
    Xia, H, Wang, HL, Xiao, W, Lai, MO, Lu, L, “Thin Film Li Electrolytes for All-Solid-State Micro-batteries.” Int. J. Surf. Sci. Eng., 3 23 (2009)CrossRefGoogle Scholar
  4. 4.
    Bates, JB, Dudney, NJ, Neudecker, B, Ueda, A, Evans, CD, “Thin-Film Lithium and Lithium-Ion Batteries.” Solid State Ion., 135 33–45 (2000)CrossRefGoogle Scholar
  5. 5.
    Gaikwad, AM, Arias, AC, Steingart, DA, “Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects.” Energy Technol., 3 305–328 (2015)CrossRefGoogle Scholar
  6. 6.
    Oudenhoven, JFM, Baggetto, L, Notten, PHL, “All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts.” Adv. Energy Mater., 1 10–33 (2011)CrossRefGoogle Scholar
  7. 7.
    Patil, A, et al., “Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries.” Mater. Res. Bull., 43 1913–1942 (2008)CrossRefGoogle Scholar
  8. 8.
    Seidel, SM, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “PVDF-HFP/Ether-Modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries.” Chem. Commun., 51 12048–12051 (2015)CrossRefGoogle Scholar
  9. 9.
    Gowda, SR, et al., “Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications.” Nano Lett., 11 101–106 (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, H, Lee, DJ, Kim, Y-J, Park, J-K, Kim, H-T, “A Simple Composite Protective Layer Coating that Enhances the Cycling Stability of Lithium Metal Batteries.” J. Power Sources, 284 103–108 (2015)CrossRefGoogle Scholar
  11. 11.
    Sham, AYW, Notley, SM, “Graphene–Polyelectrolyte Multilayer Film Formation Driven by Hydrogen Bonding.” J. Colloid Interface Sci., 456 32–41 (2015)CrossRefGoogle Scholar
  12. 12.
    Jung, Y-C, Lee, S-M, Choi, J-H, Jang, SS, Kim, D-W, “All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes.” J. Electrochem. Soc., 162 A704–A710 (2015)CrossRefGoogle Scholar
  13. 13.
    Zhang, H, et al., “Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte.” Electrochim. Acta, 133 529–538 (2014)CrossRefGoogle Scholar
  14. 14.
    Chun-Guey, W, Chiung-Hui, W, Ming-I, L, Huey-Jan, C, “New Solid Polymer Electrolytes Based on PEO/PAN Hybrids.” J. Appl. Polym. Sci., 99 1530–1540 (2006)CrossRefGoogle Scholar
  15. 15.
    Kesavan, K, Rajendran, S, Mathew, CM, “Studies on Poly(vinyl pyrrolidone) Based Solid Polymer Blend Electrolytes Complexed with Various Lithium Salts.” Polym. Sci. Ser. B, 56 520–529 (2014)CrossRefGoogle Scholar
  16. 16.
    Cznotka, E, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “Semi-interpenetrating Polymer Network of Poly(methyl methacrylate) and Ether-Modified Polysiloxane.” Solid State Ion., 274 55–63 (2015)CrossRefGoogle Scholar
  17. 17.
    Chung, N, Kang, D, Kim, D, “Preparation and Properties of Cross-linked Poly(ethylene glycol)/Poly[(vinylidene fluoride)-co-hexafluoropropylene] Interpenetrating Network-Type Electrolytes for Secondary Lithium Batteries.” Polym. Int., 54 1153–1157 (2005)CrossRefGoogle Scholar
  18. 18.
    Fan, L, Dang, Z, Nan, C-W, Li, M, “Thermal, Electrical and Mechanical Properties of Plasticized Polymer Electrolytes Based on PEO/P(VDF-HFP) Blends.” Electrochim. Acta, 48 205–209 (2002)CrossRefGoogle Scholar
  19. 19.
    Ren, Z, et al., “Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) with Crosslinked Poly(ethylene glycol) for Lithium Batteries.” Solid State Ion., 180 693–697 (2009)CrossRefGoogle Scholar
  20. 20.
    Li, H, et al., “Gel Polymer Electrolytes Based on Active PVDF Separator for Lithium Ion Battery. I: Preparation and Property of PVDF/Poly(dimethylsiloxane) Blending Membrane.” J. Membr. Sci., 379 397–402 (2011)CrossRefGoogle Scholar
  21. 21.
    Li, H, et al., “Preparation and Properties of Poly(vinylidene fluoride)/Poly(dimethylsiloxane) Graft (Poly(propylene oxide)-block-Poly(ethylene oxide)) Blend Porous Separators and Corresponding Electrolytes.” Electrochim. Acta, 116 413–420 (2014)CrossRefGoogle Scholar
  22. 22.
    Liu, F, Hashim, NA, Liu, Y, Abed, MRM, Li, K, “Progress in the Production and Modification of PVDF Membranes.” J. Membr. Sci., 375 1–27 (2011)CrossRefGoogle Scholar
  23. 23.
    Cznotka, E, Jeschke, S, Wiemhöfer, H-D, “Characterization of Semi-interpenetrating Polymer Electrolytes Containing Poly(vinylidene fluoride-co-hexafluoropropylene) and Ether-Modified Polysiloxane.” J. Membr. Sci. (submitted)Google Scholar
  24. 24.
    Tang, S, Zhao, H, “Glymes as Versatile Solvents for Chemical Reactions and Processes: From the Laboratory to Industry.” RSC Adv., 4 11251 (2014)CrossRefGoogle Scholar
  25. 25.
    Gladysz, J, Curran, DP, “Fluorous Chemistry: From Biphasic Catalysis to a Parallel Chemical Universe and Beyond.” Tetrahedron, 58 3823–3825 (2002)CrossRefGoogle Scholar
  26. 26.
    Hooper, R, et al., “Highly Conductive Siloxane Polymers.” Macromolecules, 34 931–936 (2001)CrossRefGoogle Scholar
  27. 27.
    Bufton, JL, “Laser Altimetry Measurements from Aircraft and Spacecraft.” Proc. IEEE, 77 463–477 (1989)CrossRefGoogle Scholar
  28. 28.
    Fifer-Bizjak, K, “Determining the Surface Roughness Coefficient by 3D Scanner.” Geologija, 53 147–152 (2010)CrossRefGoogle Scholar
  29. 29.
    Kukko, A, Anttila, K, Manninen, T, Kaasalainen, S, Kaartinen, H, “Snow Surface Roughness from Mobile Laser Scanning Data.” Cold Reg. Sci. Technol., 96 23–35 (2013)CrossRefGoogle Scholar
  30. 30.
    Siewczyńska, M, “Method for Determining the Parameters of Surface Roughness by Usage of a 3D Scanner.” Arch. Civ. Mech. Eng., 12 83–89 (2012)CrossRefGoogle Scholar
  31. 31.
    Klamt, A, “The COSMO and COSMO-RS Solvation Models.” Wiley Interdiscip. Rev. Comput. Mol. Sci., 1 699–709 (2011)CrossRefGoogle Scholar
  32. 32.
    Klamt, A, “COSMO-RS for Aqueous Solvation and Interfaces.” Fluid Phase Equilib., (2015). doi:10.1016/j.fluid.2015.05.027 Google Scholar
  33. 33.
    Klamt, A, Jonas, V, Bürger, T, Lohrenz, JCW, “Refinement and Parametrization of COSMO-RS.” J. Phys. Chem. A, 102 5074–5085 (1998)CrossRefGoogle Scholar
  34. 34.
    Jankowsky, S, Hiller, MM, Wiemhöfer, H-D, “Preparation and Electrochemical Performance of Polyphosphazene Based Salt-in-Polymer Electrolyte Membranes for Lithium Ion Batteries.” J. Power Sources, 253 256–262 (2014)CrossRefGoogle Scholar
  35. 35.
    Allcock, HR, Nelson, JM, Reeves, SD, Honeyman, CH, Manners, I, “Ambient-Temperature Direct Synthesis of Poly(organophosphazenes) via the ‘Living’ Cationic Polymerization of Organo-Substituted Phosphoranimines.” Macromolecules, 30 50–56 (1997)CrossRefGoogle Scholar
  36. 36.
    Allcock, HR, Krause, WE, “Polyphosphazenes with Adamantyl Side Groups.” Macromolecules, 30 5683–5687 (1997)CrossRefGoogle Scholar
  37. 37.
    Li, M, et al., “Controlling the Microstructure of Poly(vinylidene-fluoride) (PVDF) Thin Films for Microelectronics.” J. Mater. Chem. C, 1 7695–7702 (2013)CrossRefGoogle Scholar
  38. 38.
    Stewart, JJP, “MOPAC: A Semiempirical Molecular Orbital Program.” J. Comput. Aided Mol. Des., 4, 1–103 (1990)CrossRefGoogle Scholar
  39. 39.
    Maia, JDC, et al., “GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.” J. Chem. Theory Comput., 8 3072–3081 (2012)CrossRefGoogle Scholar
  40. 40.
    Stewart, JJP, “Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-optimization of Parameters.” J. Mol. Model., 19 1–32 (2013)CrossRefGoogle Scholar
  41. 41.
    Allouche, A-R, “Gabedit—A Graphical User Interface for Computational Chemistry Softwares.” J. Comput. Chem., 32 174–182 (2011)CrossRefGoogle Scholar
  42. 42.
    TURBOMOLE, University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2007Google Scholar
  43. 43.
    Ahlrichs, R, Bär, M, Häser, M, Horn, H, Kölmel, C, “Electronic Structure Calculations on Workstation Computers: The Program System Turbomole.” Chem. Phys. Lett., 162 165–169 (1989)CrossRefGoogle Scholar
  44. 44.
    Becke, AD, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior.” Phys. Rev. A, 38 3098–3100 (1988)CrossRefGoogle Scholar
  45. 45.
    Perdew, JP, “Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas.” Phys. Rev. B, 33 8822–8824 (1986)CrossRefGoogle Scholar
  46. 46.
    Schäfer, A, Huber, C, Ahlrichs, R, “Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr.” J. Chem. Phys., 100 5829 (1994)CrossRefGoogle Scholar
  47. 47.
    Loschen, C, Klamt, A, “Prediction of Solubilities and Partition Coefficients in Polymers Using COSMO-RS.” Ind. Eng. Chem. Res., 53 11478–11487 (2014)CrossRefGoogle Scholar
  48. 48.
    Fox, TG, Flory, PJ, “Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight.” J. Appl. Phys., 21 581 (1950)CrossRefGoogle Scholar
  49. 49.
    Bharti, A, Banerjee, T, “Solubility Prediction of Bio-oil Derived Chemicals in Aqueous Media by Localized Molecular Orbital-Energy Decomposition Analysis (LMO-EDA) and COSMO-RS predictions.” Comput. Theor. Chem., 1067 48–59 (2015)CrossRefGoogle Scholar
  50. 50.
    Garcia-Chavez, LY, Hermans, AJ, Schuur, B, de Haan, AB, “COSMO-RS Assisted Solvent Screening for Liquid–Liquid Extraction of Mono Ethylene Glycol from Aqueous Streams.” Sep. Purif. Technol., 97 2–10 (2012)CrossRefGoogle Scholar
  51. 51.
    Klamt, A, Eckert, F, “COSMO-RS: A Novel and Efficient Method for the A Priori Prediction of Thermophysical Data of Liquids.” Fluid Phase Equilib., 172 43–72 (2000)CrossRefGoogle Scholar
  52. 52.
    Hallinan, DT, Balsara, NP, “Polymer Electrolytes.” Annu. Rev. Mater. Res., 43 503–525 (2013)CrossRefGoogle Scholar
  53. 53.
    Meyer, WH, “Polymer Electrolytes for Lithium-Ion Batteries.” Adv. Mater. Deerfield Beach Fla, 10 439–448 (1998)Google Scholar

Copyright information

© American Coatings Association 2016

Authors and Affiliations

  • Eva Cznotka
    • 1
  • Steffen Jeschke
    • 1
    • 2
  • Sebastian Schmohl
    • 1
  • Patrik Johansson
    • 2
  • Hans-Dieter Wiemhöfer
    • 1
  1. 1.Institute for Inorganic and Analytical ChemistryUniversity of MünsterMünsterGermany
  2. 2.Department of Applied PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations