Journal of Coatings Technology and Research

, Volume 11, Issue 6, pp 841–852 | Cite as

Mechanical properties of UV-waterborne varnishes reinforced by cellulose nanocrystals

  • Vahe Vardanyan
  • Bouddah Poaty
  • Grégory Chauve
  • Véronic Landry
  • Tigran Galstian
  • Bernard Riedl
Article

Abstract

There are many instances in the literature of nanocellulose-thermoplastic composites, but there are few studies on coatings reinforced by cellulose nanocrystals (CNCs). The overall objective of this research was to develop organic nanoparticles-reinforced UV-water-based coatings for wood applications and to study the effect, mainly on wear properties, of the final composite coatings. CNC was mixed in the varnishes to improve the mechanical properties of the coatings. One of the key aspects in the technology of nanocomposites remains the dispersion of the nanoparticles within the matrix as well as its affinity with the matrix. To quantify the dispersion, efficient methods of characterization are needed in order to reveal the nanosized particles. In this article, a novel characterization method based on atomic force microscopy was employed to characterize such nanocomposite coatings, by measuring surface nanoroughness, which is clearly correlated with quality of dispersion and mechanical properties. CNC was modified by either alkyl quaternary ammonium bromides or acryloyl chloride. The mechanical properties (abrasion and scratch resistances, hardness and adhesion) were analyzed and compared to the reference varnish without nanoparticles. The modified CNC addition in UV-water-based coatings results in an approximately 30–40% increase in wear resistance (abrasion and scratch), without any loss of appearance.

Keywords

Cellulose nanocrystals CNC Coating Dispersion Surface modification Mechanical properties Wear resistance 

Notes

Acknowledgments

Thanks to the Fonds de Recherche Nature et Technologie du Québec, the Conseil de Recherches en Sciences Naturelles et Génie du Canada, and Arboranano for funding this research as well as FPInnovations’ pilot plant for the production of CNC.

References

  1. 1.
    Decker, C, Masson, F, Schwalm, R, “How to Speed Up the UV Curing of Water-Based acrylic Coatings.” J. Coat. Technol. Res., 1 (2) 127–136 (2004)CrossRefGoogle Scholar
  2. 2.
    Liptakova, E, Kudela, J, Sarvas, J, “Study of the System Wood-Coating Material—I. Wood-Liquid Coating Material.” Holzforschung, 54 (2) 189–196 (2000)CrossRefGoogle Scholar
  3. 3.
    Tauber, A, Scherzer, T, Mehnert, R, “UV Curing of Aqueous Polyurethane Acrylate Dispersions. A Comparative Study by Real-Time FTIR Spectroscopy and Pilot Scale Curing.” J. Coat. Technol., 72 (911) 51–60 (2000)CrossRefGoogle Scholar
  4. 4.
    Landry, V, Blanchet, P, Riedl, B, “Mechanical and Optical Properties of Clay-Based Nanocomposites Coatings for Wood Flooring.” Prog. Org. Coat., 67 (4) 381–388 (2010)CrossRefGoogle Scholar
  5. 5.
    Sow, C, Riedl, B, Blanchet, P, “UV-Waterborne Polyurethane-Acrylate Nanocomposite Coatings Containing Alumina and Silica Nanoparticles for Wood: Mechanical, Optical, and Thermal Properties Assessment.” J. Coat. Technol. Res., 8 (2) 211–221 (2011)CrossRefGoogle Scholar
  6. 6.
    Bautista, Y, Gonzalez, J, Gilabert, J, Ibáñez, MJ, Sanz, V, “Correlation Between the Wear Resistance, and the Scratch Resistance, for Nanocomposite Coatings.” Prog. Org. Coat., 70 (4) 178–185 (2011)CrossRefGoogle Scholar
  7. 7.
    Bauer, F, Glasel, HJ, Decker, U, Ernst, H, Freyer, A, Hartmann, E, Sauerland, V, Mehnert, R, “Trialkoxysilane Grafting onto Nanoparticles for the Preparation of Clear Coat Polyacrylate Systems with Excellent Scratch Performance.” Prog. Org. Coat., 47 (2) 147–153 (2003)CrossRefGoogle Scholar
  8. 8.
    Bauer, F, Ernst, H, Hirsch, D, Naumov, S, Pelzing, M, Sauerland, V, Mehnert, R, “Preparation of Scratch and Abrasion Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 5.” Macromol. Chem. Phys., 205 (12) 1587–1593 (2004)CrossRefGoogle Scholar
  9. 9.
    Bauer, F, Flyunt, R, Czihal, K, Buchmeiser, MR, Langguth, H, Mehnert, R, “Nano/Micro Particle Hybrid Composites for Scratch and Abrasion Resistant Polyacrylate Coatings.” Macromol. Mater. Eng., 291 (5) 493–498 (2006)CrossRefGoogle Scholar
  10. 10.
    Miao, CW, Hamad, WY, “Cellulose Reinforced Polymer Composites and Nanocomposites: A Critical Review.” Cellulose, 20 (5) 2221–2262 (2013)CrossRefGoogle Scholar
  11. 11.
    Poaty, B, Vardanyan, V, Wilczak, L, Chauve, G, Riedl, B, “Modification of Cellulose Nanocrystals as Reinforcement Derivatives for Wood Coatings.” Prog. Org. Coat., 77 (4) 813–820 (2014)CrossRefGoogle Scholar
  12. 12.
    Revol, JF, Bradford, H, Giasson, J, Marchessault, RH, Gray, DG, “Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension.” Int. J. Biol. Macromol., 14 (3) 170–172 (1992)CrossRefGoogle Scholar
  13. 13.
    Fleming, K, Gray, DG, Matthews, S, “Cellulose Crystallites.” Chemistry, 7 (9) 1831–1835 (2001)CrossRefGoogle Scholar
  14. 14.
    Helbert, W, Cavaille, JY, Dufresne, A, “Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers. 1. Processing and Mechanical Behavior.” Polym. Compos., 17 (4) 604–611 (1996)CrossRefGoogle Scholar
  15. 15.
    Revol, JF, Godbout, L, Dong, XM, Gray, DG, Chanzy, H, Maret, G, “Chiral Nematic Suspensions of Cellulose Crystallites—Phase-Separation and Magnetic-Field Orientation.” Liquid Crystals, 16 (1) 127–134 (1994)CrossRefGoogle Scholar
  16. 16.
    Dong, XM, Revol, JF, Gray, DG, “Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose.” Cellulose, 5 (1) 19–32 (1998)CrossRefGoogle Scholar
  17. 17.
    Heux, L, Dinand, E, Vignon, MR, “Structural Aspects in Ultrathin Cellulose Microfibrils Followed by C-13 CP-MAS NMR.” Carbohydr. Polym., 40 (2) 115–124 (1999)CrossRefGoogle Scholar
  18. 18.
    Sugiyama, J, Chanzy, H, Revol, JF, “On the Polarity of Cellulose in the Cell-Wall of Valonia.” Planta, 193 (2) 260–265 (1994)CrossRefGoogle Scholar
  19. 19.
    Favier, V, Chanzy, H, Cavaille, JY, “Polymer Nanocomposites Reinforced by Cellulose Whiskers.” Macromolecules, 28 (18) 6365–6367 (1995)CrossRefGoogle Scholar
  20. 20.
    Bauer, F, Mehnert, R, “UV Curable Acrylate Nanocomposites: Properties and Applications.” J. Polym. Res., 12 (6) 483–491 (2005)CrossRefGoogle Scholar
  21. 21.
    Farrokhpay, S, “Application of Spectroscopy and Microscopy Techniques in Surface Coatings Evaluation: A Review.” Appl. Spectrosc. Rev., 47 (3) 233–243 (2012)CrossRefGoogle Scholar
  22. 22.
    Thometzek, P, Ludwig, A, Karbach, A, Kohler, K, “Effects of Morphology and Surface Treatment of Inorganic Pigments on Waterborne Coating Properties.” Prog. Org. Coat., 36 (4) 201–209 (1999)CrossRefGoogle Scholar
  23. 23.
    Vardanyan, V, Poaty, B, Chauve, G, Landry, V, Galstian, T, Riedl, B, “Wear Resistance of UV-Curable of Wood Water-Based Coatings with Added Cellulose Nanocrystals.” In: Aliofkhazraei, M (ed.) Anti-Abrasive Nanocoatings: Current and Future Applications, 2014. http://www.amazon.fr/Anti-Abrasive-Nanocoatings-Current-Future-Applications/dp/0857092111
  24. 24.
    Beck, S, Bouchard, J, Berry, R, “Controlling the Reflection Wavelength of Iridescent Solid Films of Nanocrystalline Cellulose.” Biomacromolecules, 12 (1) 167–172 (2011)CrossRefGoogle Scholar
  25. 25.
    Nypelo, T, Osterberg, M, Zu, XJ, Laine, J, “Preparation of Ultrathin Coating Layers Using Surface Modified Silica Nanoparticles.” Colloids Surf. A, 392 (1) 313–321 (2011)CrossRefGoogle Scholar
  26. 26.
    Bibette, J, Leal-Calderon, F, Schmitt, V, Poulin, P, “Introduction.” In: Emulsion Science—Basic Principles. An Overview, Vol. 181, pp. 1–4. Springer, Berlin, 2002Google Scholar
  27. 27.
    Tigges, B, Moller, M, Weichold, O, “ZnO Nanoparticle-Containing Emulsions for Transparent, Hydrophobic UV-Absorbent Films.” J. Colloid Interface Sci., 345 (1) 41–45 (2010)CrossRefGoogle Scholar
  28. 28.
    Nobel, ML, Picken, SJ, Mendes, E, “Waterborne Nanocomposite Resins for Automotive Coating Applications.” Prog. Org. Coat., 58 (2–3) 96–104 (2007)CrossRefGoogle Scholar
  29. 29.
    Sow, C, “Revêtements Nanocomposites UV-Aqueux pour le bois à usage intérieur.” Ph.D. thesis, Université Laval, 2010Google Scholar

Copyright information

© American Coatings Association 2014

Authors and Affiliations

  • Vahe Vardanyan
    • 1
    • 2
  • Bouddah Poaty
    • 3
  • Grégory Chauve
    • 4
  • Véronic Landry
    • 5
  • Tigran Galstian
    • 1
  • Bernard Riedl
    • 2
  1. 1.Center for Optics, Photonics and Laser, Department of Physics, Engineering Physics and OpticsUniversité LavalQuébecCanada
  2. 2.Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatiqueUniversité LavalQuébecCanada
  3. 3.Centre technologique des résidus industrielsRouyn-NorandaCanada
  4. 4.FPInnovationsPointe-ClaireCanada
  5. 5.FPInnovationsQuébecCanada

Personalised recommendations