Comparison of electrolyte effects for poly(3,4-ethylenedioxythiophene) and poly(3-octylthiophene) by electrochemical impedance spectroscopy and polymerization parameters with morphological analyses on coated films

  • Murat Ates
  • Tolga Karazehir
  • Fatih Arican
  • Nuri Eren
Article

Abstract

3,4-Ethylenedioxythiophene and 3-octylthiophene were electropolymerized on glassy carbon electrodes (GCE) to compare with four different electrolytes [lithium perchlorate (LiClO4), sodium perchlorate, tetraethylammonium tetrafluoroborate, and tetrabutylammonium tetrafluoroborate] in a solvent of acetonitrile (CH3CN). Modified electrodes were characterized by cyclic voltammetry, attenuated total reflectance–Fourier transform IR spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). Nyquist and Bode plots for magnitude, phase, admittance, and capacitance on both polymer-modified electrodes were comparatively investigated in detail. The highest low-frequency capacitance (CLF) and double-layer capacitance (Cdl) were obtained in 0.1 M LiClO4/CH3CN for poly(3,4-ethylenedioxythiophene) and poly(octylthiophene)/GCE. EIS data were fitted to the equivalent circuit model of R(Q(R(C(R(C(RW))))))(CR), which is used to investigate circuit parameters.

Keywords

Poly(3,4-ethylenedioxythiophene) Poly(3-octylthiophene) Electrochemical impedance spectroscopy Electrolyte Morphology Atomic force microscopy 

References

  1. 1.
    Virji, S, Fowler, JD, Baker, CO, Huang, J, Kaner, RB, Weiller, BH, “Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for Hydrogen Sulfide.” Small, 1 (6) 624–627 (2005)CrossRefGoogle Scholar
  2. 2.
    Skotheim, T, Elsenbauer, RL, Reynolds, JR (eds.), Handbook of Conducting Polymers, 2nd ed. Marcel Dekker, Livingston, NJ (1997)Google Scholar
  3. 3.
    Inzelt, G, Pineri, M, Schultze, JW, Vorotyntsev, MA, “Electron and Proton Conducting Polymers: Recent Developments and Prospects.” Electrochim. Acta, 45 (15–16) 2403–2421 (2000)CrossRefGoogle Scholar
  4. 4.
    Schweiss, R, Lubben, JF, Johannsmann, D, Knoll, W, “Electropolymerization of Ethylene Dioxythiophene (EDOT) in Micellar Aqueous Solutions Studied by Electrochemical Quartz Crystal Microbalance and Surface Plasmon Resonance.” Electrochim. Acta, 50 (14) 2849–2856 (2005)CrossRefGoogle Scholar
  5. 5.
    Shirakawa, H, Louis, EJ, MacDiarmid, AG, Chiang, CK, Heeger, AJ, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x.” J. Chem. Soc. Chem. Commun., 16 578–580 (1977)CrossRefGoogle Scholar
  6. 6.
    Collazos-Castro, JE, Polo, JL, Hernández-Labrado, GR, Padial-Cañete, V, García-Rama, C, “Bioelectrochemical Control of Neural Cell Development on Conducting Polymers.” Biomaterials, 31 (35) 9244–9255 (2010)CrossRefGoogle Scholar
  7. 7.
    Heeger, AJ, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials.” J. Phys. Chem. B., 105 (36) 8475–8491 (2001)CrossRefGoogle Scholar
  8. 8.
    McCullough, RD, Ewbank, PC, Skotheim, TA, Handbook of Conducting Polymers. Marcel Dekker, New York (1998)Google Scholar
  9. 9.
    Koizhaiganova, RB, Kim, HJ, Vasudevan, T, Lee, MS, “Electrical and Optical Properties of Conducting Poly(3-hexylthiophene)/Multi-Walled Carbon Nanotube System.” Int. J. Polym. Mater., 58 (2) 120–128 (2009)CrossRefGoogle Scholar
  10. 10.
    Akoudad, S, Roncali, J, “Electrogenerated Poly(thiophenes) with Extremely Low Bandgap.” Synth. Met., 101 (1–3) 149–149 (1999)CrossRefGoogle Scholar
  11. 11.
    Street, GB, Clarke, TC, “Conducting Polymers: A Review of Recent Work.” IBM J. Res. Dev., 25 (1) 51–57 (1981)CrossRefGoogle Scholar
  12. 12.
    Roncali, J, “Synthetic Principles for Band Gap Control in Linear Π-Conjugated Systems.” Chem. Rev., 97 (1) 173–205 (1997)CrossRefGoogle Scholar
  13. 13.
    McCullough, RD, “The Chemistry of Conducting Polythiophenes.” Adv. Mater., 10 (2) 93–116 (1998)CrossRefGoogle Scholar
  14. 14.
    Kutsche, C, Targove, J, Haaland, PJ, “Microlithographic Patterning of Polythiophene Films.” Appl. Phys., 73 (5) 2602–2604 (1993)CrossRefGoogle Scholar
  15. 15.
    Genies, EM, Boyle, A, Lapkowski, M, Tsintavis, C, “Polyaniline: A Historical Survey.” Synth. Met., 36 (2) 139–182 (1990)CrossRefGoogle Scholar
  16. 16.
    Buzarovska, A, Arsov, L, “Comparative Study of the Electrochemical Response of Poly (Alkyl Thiophene) Derivatives Deposited on Platinum and Titanium Electrodes.” Polym. Bull., 50 (3) 161–168 (2003)CrossRefGoogle Scholar
  17. 17.
    Shin, WS, Kim, SC, Lee, SJ, Jeon, HS, Kim, MK, Naidu, BVK, Jin, SH, Lee, JK, Lee, JW, Gal, YS, “Synthesis and Photovoltaic Properties of aLow-Band-Gap Polymer Consisting of Alternating Thiophene and Benzothiadiazole Derivatives for Bulk-Heterojunction and Dye-Sensitized Solar Cells.” J. Polym. Sci. A: Polym. Chem., 45 (8) 1394–1402 (2007)CrossRefGoogle Scholar
  18. 18.
    Qi, Z, Rees, NG, Pickup, PG, “Electrochemically Induced Substitution of Polythiophenes and Polypyrrole.” Chem. Mater., 8 (3) 701–707 (1996)CrossRefGoogle Scholar
  19. 19.
    Muramatsu, Y, Yamamoto, T, Hasegawa, M, Yasi, T, Koinuma, H, “Piezochromic Behaviour of Regioregular Poly(3-hexylthiophene-2,5-diyl) and Poly(5,8-dihexadecyloxyanthraquinone-1,4-diyl).” Polymer, 42 (15) 6673–6675 (2001)CrossRefGoogle Scholar
  20. 20.
    Nicho, ME, Garcia-Carvajal, S, Marquez-Aguilar, PA, Guizado-Rodriguez, M, Escalante-Garcia, J, Medrano-Baca, G, “Synthesis and Physicochemical Characterization of Copolymers of 3-Octylthiophene and Thiophene Functionalized with Azo Chromophore.” Mater. Chem. Phys., 129 (3) 1027–1034 (2011)CrossRefGoogle Scholar
  21. 21.
    Bobacka, J, Ivaska, A, “Electrochemical Study of Poly(3-octylthiophene) Film Electrodes. 2. Reversible Redox/Conductivity State Switching: Impedance Study.” Synth. Met., 44 (1) 21–34 (1991)CrossRefGoogle Scholar
  22. 22.
    Kumar, J, Singh, RK, Chand, S, Kumar, V, Rastogi, RC, Singh, R, “DC Electrical Conduction and Morphology of Poly(3-octylthiophene) Films.” J. Phys. D: Appl. Phys., 39 (1) 196–202 (2006)CrossRefGoogle Scholar
  23. 23.
    Maynor, BW, Filocamo, SF, Grinstaff, MW, Liu, J, “Direct-Writing of Polymer Nanostructures: Poly(thiophene) Nanowires on Semiconducting and Insulating Surfaces.” J. Am. Chem. Soc., 124 (4) 522–523 (2002)CrossRefGoogle Scholar
  24. 24.
    Grzeszczuk, M, Bobacka, J, Ivaska, A, “Ion Transfer at a Poly(3-octylthiophene) Film Electrode.” J. Electroanal. Chem., 362 (1–2) 287–289 (1993)Google Scholar
  25. 25.
    Bobacka, J, Grzeszczuk, M, Ivaska, A, “Electron Transfer at Conducting Polymer Film Electrodes: Mechanism and Kinetics of Ferrocene Oxidation at Poly(3-octylthiophene).” J. Electroanal. Chem., 427 (1–2) 63–69 (1997)Google Scholar
  26. 26.
    Schopf, G, Koßmehl, G, Polythiophenes—Electrically Conductive Polymers. Springer, Berlin (1995)Google Scholar
  27. 27.
    Tolstopyatova, EG, Sazonova, SN, Kondrat’ev, VV, Malev, VV, “Electrochemical Impedance Spectra of Poly(3-octylthiophene) Films.” Russ. J. Electrochem., 40 (9) 930–936 (2004)CrossRefGoogle Scholar
  28. 28.
    Jonas, F, Schrader, L, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes.” Synth. Met., 41 (3) 831–836 (1991)CrossRefGoogle Scholar
  29. 29.
    Sonmez, G, Meng, H, Wudl, F, “Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency.” Chem. Mater., 16 (4) 574–580 (2004)CrossRefGoogle Scholar
  30. 30.
    Meskers, SCJ, Duren, JKJ, Janssen, RAJ, Louwet, F, Groenendaal, L, “Infrared Detectors with Poly(3,4-ethylenedioxy Thiophene)/Poly(styrene Sulfonic Acid) (PEDOT/PSS) as the Active Material.” Adv. Mater., 15 (7–8) 613–616 (2003)CrossRefGoogle Scholar
  31. 31.
    Fehse, K, Walzer, K, Leo, K, Lövenich, W, Elschne, A, “Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes.” Adv. Mater., 19 (3) 441–444 (2007)CrossRefGoogle Scholar
  32. 32.
    Xu, Q, Li, Y, Feng, W, Yuan, X, “Fabrication and Electrochemical Properties of Polyvinyl Alcohol/Poly(3,4-Ethylenedioxythiophene) Ultrafine Fibers via Electrospinning of EDOT Monomers with Subsequent In Situ Polymerization.” Synth. Met., 160 (1–2) 88–93 (2010)CrossRefGoogle Scholar
  33. 33.
    Argun, AA, Cirpan, A, Reynolds, JR, “The First Truly All-Polymer Electrochromic Devices.” Adv. Mater., 15 (16) 1338–1341 (2003)CrossRefGoogle Scholar
  34. 34.
    Poverenov, E, Li, M, Bitler, A, Bendikov, M, “Major Effect of Electropolymerization Solvent on Morphology and Electrochromic Properties of PEDOT Films.” Chem. Mater., 22 (13) 4019–4025 (2010)CrossRefGoogle Scholar
  35. 35.
    Wu, S, Han, S, Zheng, Y, Zheng, H, Liu, N, Wang, L, Cao, Y, Wang, J, “pH-Neutral PEDOT:PSS as Hole Injection Layer in Polymer Light Emitting Diodes.” Org. Electron., 12 (3) 504–508 (2011)CrossRefGoogle Scholar
  36. 36.
    Lin, KC, Tsai, TH, Chen, SM, “Performing Enzyme-Free H(2)O(2) Biosensor and Simultaneous Determination for AA, DA, and UA by MWCNT-PEDOT Film.” Biosens. Bioelectron., 26 (2) 608–614 (2010)CrossRefGoogle Scholar
  37. 37.
    Chen, JH, Dai, CA, Chiu, WY, “Synthesis of Highly Conductive EDOT Copolymer Films via Oxidative Chemical In Situ Polymerization.” J. Polym. Sci. A: Polym. Chem., 46 (5) 1662–1673 (2008)CrossRefGoogle Scholar
  38. 38.
    Beaujuge, PM, Ellinger, S, Reynolds, JR, “The Donor-Acceptor Approach Allows a Black-To-Transmissive Switching Polymeric Electrochrome.” Nat. Mater., 7 (10) 795–799 (2008)CrossRefGoogle Scholar
  39. 39.
    Chang, CH, Wang, KL, Jiang, JC, Liawa, DJ, Lee, KR, Lai, JY, Lai, KH, “Novel Rapid Switching and Bleaching Electrochromic Polyimides Containing Triarylamine with 2-Phenyl-2-Isopropyl Groups.” Polymer, 51 (20) 4493–4502 (2010)CrossRefGoogle Scholar
  40. 40.
    Goto, H, “Electrochemical Polymerization in Crystal-Preparation of Polybithiophene with Crystal Order.” J. Polym. Sci. A: Polym. Chem., 50 (4) 622–628 (2012)CrossRefGoogle Scholar
  41. 41.
    Sasikumar, R, Manisankar, P, “Newer Dynamic Electrochromic Nanorods of Poly(O-anisidine-Co-Ethyl 4-Aminobenzoate) Synthesized by Electrochemical Polymerization.” Electrochim. Acta, 59 558–566 (2012)CrossRefGoogle Scholar
  42. 42.
    Galal, A, Wang, Z, Karagozler, AE, Zimmer, H, Mark, HB, Bishop, PL, “A Potentiometric Iodide (and Other) Ion Sensor Based on a Conductıng Polymer Film Electrode. 2. Effect of Electrode Conditioning and Regeneration Techniques.” Anal. Chim. Acta, 299 (2) 145–163 (1994)CrossRefGoogle Scholar
  43. 43.
    Ciftci, H, Tamer, U, “Functional Gold Nanorod Particles on Conducting Polymer Poly(3-octylthiophene) as Non-Enzymatic Glucose Sensor.” React. Funct. Polym., 72 (2) 127–132 (2012)CrossRefGoogle Scholar
  44. 44.
    Tian, L, Feng, Y, Qi, Y, Wang, B, Fu, X, Chen, Y, “Investigations of Electrochemical Polymerization Processes of Thin Poly(pyrrole) Films and Their Application to Anion Sensor Based on Surface Plasmon Resonance.” J. Polym. Res., 18 (6) 2379–2387 (2011)CrossRefGoogle Scholar
  45. 45.
    Tolstopyatova, EG, Sazonova, SN, Malev, VV, Kondratiev, VV, “Electrochemical Impedance Spectroscopy of Poly (3-Methylthiophene) and Poly(3-octylthiophene) Film Electrodes.” Electrochim. Acta, 50 (7–8) 1565–1571 (2005)CrossRefGoogle Scholar
  46. 46.
    Barsoukov, E, Macdonald, JR, Impedance Spectroscopy: Theory, Experiment and Applications. Wiley Interscience, Hoboken, NJ (2005)CrossRefGoogle Scholar
  47. 47.
    Ates, M, “Review Study of Electrochemical Impedance Spectroscopy and Equivalent Electrical Circuits of Conducting Polymers on Carbon Surfaces.” Prog. Org. Coat., 71 (1) 1–10 (2011)CrossRefGoogle Scholar
  48. 48.
    Malev, VV, Kondratiev, VV, “Charge Transfer Processes in Conductive Polymer Films.” Russ. Chem. Rev., 75 (2) 147–160 (2006)CrossRefGoogle Scholar
  49. 49.
    Hernandez-Labrado, GR, Contreras-Donayre, RE, Collazos-Castro, JE, Polo, JL, “Subdiffusion Behavior in Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate (PEDOT:PSS) Evidenced by Electrochemical Impedance Spectroscopy.” J. Electroanal. Chem., 659 (2) 201–204 (2011)CrossRefGoogle Scholar
  50. 50.
    Vorotyntsev, M, Vieil, E, Heinze, J, “Charging Process in Polypyrrole Films: Effect of Ion Association.” J. Electroanal. Chem., 450 (1) 121–141 (1998)CrossRefGoogle Scholar
  51. 51.
    Rudge, A, Davey, J, Raistrick, I, Gottesfeld, S, Ferraris, JP, “Conducting Polymers as Active Materials in Electrochemical Capacitors.” J. Power Sources, 47 (1–2) 89–107 (1994)CrossRefGoogle Scholar
  52. 52.
    Kvarnström, C, Neugebauer, H, Blomquist, S, Ahonen, HJ, Kankare, J, Ivaska, A, “In Situ Spectroelectrochemical Characterization of Poly(3,4-ethylenedioxythiophene).” Electrochim. Acta, 44 2739–2750 (1999)CrossRefGoogle Scholar
  53. 53.
    Dietrich, M, Heinze, J, Heywang, G, Jonas, F, “Electrochemical and Spectroscopic Characterization of Polyalkylenedioxythiophenes.” J. Electroanal. Chem., 369 (1–2) 87–92 (1994)Google Scholar
  54. 54.
    Noel, V, Randriamahazaka, H, Chevrot, C, “Electrochemical Impedance Spectroscopy of an Oxidized Poly(3,4-ethylenedioxythiophene) in Propylene Carbonate Solutions.” J. Electroanal. Chem., 558 41–48 (2003)CrossRefGoogle Scholar
  55. 55.
    Randriamahazaka, H, Noel, V, Chevrot, C, “Nucleation and Growth of Poly(3,4-ethylenedioxythiophene) in Acetonitrile on Platinum Under Potentiostatic Conditions.” J. Electroanal. Chem., 472 (2) 103–111 (1999)CrossRefGoogle Scholar
  56. 56.
    Xing, KZ, Fahlman, M, Chen, XW, Inganas, O, Salaneck, WR, “The Electronic Structure of Poly(3,4-ethylene-dioxythiophene): Studied by XPS and UPS.” Synth. Met., 89 (3) 161–165 (1997)CrossRefGoogle Scholar
  57. 57.
    Vinocur, MJ, Skotheim, TA, Elsenbaumer, RL, “Structural Studies of Conducting Polymers.” In: Reynolds, JR (ed.) Handbook of Conducting Polymers, 2nd ed., pp. 706–712. Marcel Dekker, New York (1998)Google Scholar
  58. 58.
    Bobacka, J, Ivaska, A, Grzeszczuk, M, “Electrochemical Study of Poly(3-octylthiophene) Film Electrodes 1. Electrolyte Effects on the Voltammetric Characteristics of the Polymer 3 States of the Polymer Film.” Synth. Met, 44 (1) 9–19 (1991)CrossRefGoogle Scholar
  59. 59.
    Groenandaal, L, Zotti, G, Aubert, PH, Waybrigth, SM, Reynolds, JR, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives.” Adv. Mater., 15 (11) 855–879 (2003)CrossRefGoogle Scholar
  60. 60.
    Rusling, JF, Suib, SL, “Characterizing Materials with Cyclic Voltammetry.” Adv. Mater., 6 (12) 922–930 (1994)CrossRefGoogle Scholar
  61. 61.
    Hernandez, V, Ramirez, FJ, Otero, TF, Lopez Navarrete, JT, “An Interpretation of the Vibrational-Spectra of Insulating and Electrically Conducting Poly(3-methylthiophene) Aided by a Theoretical Dynamical Model.” J. Chem. Phys., 100 (1) 114–129 (1994)CrossRefGoogle Scholar
  62. 62.
    Moradi, A, Emamgolizadeh, A, Omrani, A, Rostami, AA, “Electropolymerization and Characterization of 3,4-Ethylenedioxy Thiophene on Glassy Carbon Electrode and Study of Ions Transport of the Polymer During Redox Process.” J. Appl. Polym. Sci., 125 (3) 2407–2416 (2012)CrossRefGoogle Scholar
  63. 63.
    Sarac, AS, Ates, M, Parlak, EA, “Electrolyte and Solvent Effects of Electrocoated Polycarbazole Thin Films on Carbon Fiber Microelectrodes.” J. Appl. Electrochem., 36 889–898 (2006)CrossRefGoogle Scholar
  64. 64.
    Sarac, AS, Parlak, E, Sezer, E, “Sythesis and Electrochemical Polymerization of N-Ethylcarbazole-bis-3,4-ethylenedioxythiophene-N-ethylcarbazole Comonomer.” J. Appl. Polym. Sci., 103 795–801 (2007)CrossRefGoogle Scholar
  65. 65.
    Sarac, AS, Sezgin, S, Ates, M, Turhan, CM, “Monomer Concentration Effect on Electrochemically Modified Carbon Fiber with Poly[1-(4-methoxyphenyl)-1H-pyrrole] as Microcapacitor Electrode.” Adv. Polym. Technol., 28 (2) 120–130 (2009)CrossRefGoogle Scholar
  66. 66.
    Eliseeva, SN, Spiridonova, DV, Tolstopyatova, EG, Kondratiev, VV, “Redox Capacitance of Poly-3,4-ethylenedioxythiophene Studied by Cyclic Voltammetry and Faradaic Impedance Spectroscopy.” Russ. J. Electrochem., 44 (8) 894–900 (2008)CrossRefGoogle Scholar
  67. 67.
    Miller, JR, Outlaw, RA, Holloway, BC, “Graphene Electric Double Layer Capacitor with Ultra-High Power Performance.” Electrochim. Acta, 56 10443–10449 (2011)CrossRefGoogle Scholar
  68. 68.
    Ates, M, Sarac, AS, “Capacitive Behavior of Polycarbazole- and Poly(N-vinylcarbazole)-Coated Carbon Fiber Microelectrodes in Various Solutions.” J. Appl. Electrochem., 39 (10) 2043–2048 (2009)CrossRefGoogle Scholar

Copyright information

© American Coatings Association & Oil and Colour Chemists' Association 2012

Authors and Affiliations

  • Murat Ates
    • 1
  • Tolga Karazehir
    • 1
    • 2
  • Fatih Arican
    • 1
  • Nuri Eren
    • 1
  1. 1.Department of Chemistry, Faculty of Arts and SciencesNamik Kemal UniversityTekirdagTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesIstanbul Technical UniversityMaslakTurkey

Personalised recommendations